Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90922083
resolution.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 6, 00:45
Size
8 KB
Mime Type
text/x-c
Expires
Fri, Nov 8, 00:45 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22159375
Attached To
rAKA akantu
resolution.cc
View Options
/**
* @file resolution.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Jan 7 2019
* @date last modification: Mon Jan 7 2019
*
* @brief Implementation of common part of the contact resolution class
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "resolution.hh"
#include "contact_mechanics_model.hh"
#include "sparse_matrix.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
Resolution::Resolution(ContactMechanicsModel & model, const ID & id)
: Memory(id, model.getMemoryID()),
Parsable(ParserType::_contact_resolution, id), fem(model.getFEEngine()),
name(""), model(model) {
AKANTU_DEBUG_IN();
spatial_dimension = model.getMesh().getSpatialDimension();
this->initialize();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
Resolution::~Resolution() = default;
/* -------------------------------------------------------------------------- */
void Resolution::initialize() {
registerParam("name", name, std::string(), _pat_parsable | _pat_readable);
registerParam("mu", mu, Real(0.), _pat_parsable | _pat_modifiable,
"Friciton Coefficient");
registerParam("is_master_deformable", is_master_deformable, bool(false),
_pat_parsable | _pat_readable, "Is master surface deformable");
}
/* -------------------------------------------------------------------------- */
void Resolution::printself(std::ostream & stream, int indent) const {
std::string space;
for (Int i = 0; i < indent; i++, space += AKANTU_INDENT)
;
std::string type = getID().substr(getID().find_last_of(':') + 1);
stream << space << "Contact Resolution " << type << " [" << std::endl;
Parsable::printself(stream, indent);
stream << space << "]" << std::endl;
}
/* -------------------------------------------------------------------------- */
void Resolution::assembleInternalForces(GhostType /*ghost_type*/) {
AKANTU_DEBUG_IN();
this->assembleInternalForces();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Resolution::assembleInternalForces() {
AKANTU_DEBUG_IN();
for (auto & element : model.getContactElements()) {
auto nb_nodes = element.getNbNodes();
Vector<Real> local_fn(nb_nodes * spatial_dimension);
computeNormalForce(element, local_fn);
Vector<Real> local_ft(nb_nodes * spatial_dimension);
computeTangentialForce(element, local_ft);
Vector<Real> local_fc(nb_nodes * spatial_dimension);
local_fc = local_fn + local_ft;
assembleLocalToGlobalArray(element, local_fn, model.getNormalForce());
assembleLocalToGlobalArray(element, local_ft, model.getTangentialForce());
assembleLocalToGlobalArray(element, local_fc, model.getInternalForce());
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Resolution::assembleLocalToGlobalArray(const ContactElement & element,
Vector<Real> & local, Array<Real> & global) {
auto get_connectivity = [&](auto & slave, auto & master) {
Vector<UInt> master_conn =
const_cast<const Mesh &>(model.getMesh()).getConnectivity(master);
Vector<UInt> elem_conn(master_conn.size() + 1);
elem_conn[0] = slave;
for (UInt i = 1; i < elem_conn.size(); ++i) {
elem_conn[i] = master_conn[i - 1];
}
return elem_conn;
};
auto connectivity = get_connectivity(element.slave, element.master);
UInt nb_dofs = global.getNbComponent();
UInt nb_nodes = is_master_deformable ? connectivity.size() : 1;
auto & nodal_area = const_cast<Array<Real> &>(model.getNodalArea());
for (UInt i : arange(nb_nodes)) {
UInt n = connectivity[i];
for (UInt j : arange(nb_dofs)) {
UInt offset_node = n * nb_dofs + j;
global[offset_node] += local[i * nb_dofs + j] * nodal_area[element.slave];
}
}
}
/* -------------------------------------------------------------------------- */
void Resolution::assembleStiffnessMatrix(GhostType /*ghost_type*/) {
AKANTU_DEBUG_IN();
auto & global_stiffness =
const_cast<SparseMatrix &>(model.getDOFManager().getMatrix("K"));
auto & gaps = model.getGaps();
auto & projections = model.getProjections();
auto & normals = model.getNormals();
UInt surface_dimension = spatial_dimension - 1;
for (auto & element : model.getContactElements()) {
auto nb_nodes = element.getNbNodes();
Real gap(gaps.begin()[element.slave]);
Vector<Real> normal(normals.begin(spatial_dimension)[element.slave]);
Vector<Real> projection(projections.begin(surface_dimension)[element.slave]);
Matrix<Real> covariant_basis(surface_dimension, spatial_dimension);
GeometryUtils::covariantBasis(model.getMesh(), model.getContactDetector().getPositions(),
element.master, normal, projection, covariant_basis);
Vector<Real> delta_g(nb_nodes * spatial_dimension);
ResolutionUtils::firstVariationNormalGap(element, projection, normal, delta_g);
Matrix<Real> curvature(spatial_dimension,
surface_dimension * surface_dimension);
GeometryUtils::curvature(model.getMesh(), model.getContactDetector().getPositions(),
element.master, projection, curvature);
Matrix<Real> ddelta_g(nb_nodes * spatial_dimension, nb_nodes * spatial_dimension);
ResolutionUtils::secondVariationNormalGap(element, covariant_basis, curvature,
projection, normal, gap, ddelta_g);
Matrix<Real> local_kn(nb_nodes * spatial_dimension, nb_nodes * spatial_dimension);
computeNormalModuli(element, ddelta_g, delta_g, local_kn);
assembleLocalToGlobalMatrix(element, local_kn, global_stiffness);
Matrix<Real> local_kt(nb_nodes * spatial_dimension, nb_nodes * spatial_dimension);
computeTangentialModuli(element, ddelta_g, delta_g, local_kt);
assembleLocalToGlobalMatrix(element, local_kt, global_stiffness);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void Resolution::assembleLocalToGlobalMatrix(const ContactElement & element,
const Matrix<Real> & local, SparseMatrix & global) {
auto get_connectivity = [&](auto & slave, auto & master) {
Vector<UInt> master_conn =
const_cast<const Mesh &>(model.getMesh()).getConnectivity(master);
Vector<UInt> elem_conn(master_conn.size() + 1);
elem_conn[0] = slave;
for (UInt i = 1; i < elem_conn.size(); ++i) {
elem_conn[i] = master_conn[i - 1];
}
return elem_conn;
};
auto connectivity = get_connectivity(element.slave, element.master);
auto nb_dofs = spatial_dimension;
UInt nb_nodes = is_master_deformable ? connectivity.size() : 1;
UInt total_nb_dofs = nb_dofs * nb_nodes;
std::vector<UInt> equations;
for (UInt i : arange(connectivity.size())) {
UInt conn = connectivity[i];
for (UInt j : arange(nb_dofs)) {
equations.push_back(conn * nb_dofs + j);
}
}
for (UInt i : arange(total_nb_dofs)) {
UInt row = equations[i];
for (UInt j : arange(total_nb_dofs)) {
UInt col = equations[j];
global.add(row, col, local(i, j));
}
}
}
} // namespace akantu
Event Timeline
Log In to Comment