Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91495142
test_geometry_intersection_tetrahedron_4.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 11, 16:12
Size
4 KB
Mime Type
text/x-c
Expires
Wed, Nov 13, 16:12 (2 d)
Engine
blob
Format
Raw Data
Handle
21438842
Attached To
rAKA akantu
test_geometry_intersection_tetrahedron_4.cc
View Options
/**
* @file test_geometry_intersection_tetrahedron_4.cc
*
* @author Lucas Frérot <lucas.frerot@epfl.ch>
*
* @date creation: Thu Mar 26 2015
* @date last modification: Thu Mar 26 2015
*
* @brief Tests the intersection module with _tetrahedron_4 elements
*
* @section LICENSE
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "mesh_segment_intersector.hh"
#include "mesh_geom_common.hh"
#include <iostream>
/* -------------------------------------------------------------------------- */
using
namespace
akantu
;
typedef
Cartesian
K
;
typedef
K
::
Point_3
Point
;
typedef
K
::
Segment_3
Segment
;
/* -------------------------------------------------------------------------- */
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
""
,
argc
,
argv
);
debug
::
setDebugLevel
(
dblError
);
Mesh
mesh
(
3
),
interface_mesh
(
3
,
"interface_mesh"
);
mesh
.
read
(
"test_geometry_tetrahedron.msh"
);
MeshSegmentIntersector
<
3
,
_tetrahedron_4
>
intersector
(
mesh
,
interface_mesh
);
intersector
.
constructData
();
// Testing a segment going through the cube
Point
point
(
1.
,
1.
,
1.
);
Segment
segment
(
CGAL
::
ORIGIN
,
point
);
intersector
.
computeIntersectionQuery
(
segment
);
std
::
cout
<<
"number of seg_2 : "
<<
interface_mesh
.
getNbElement
(
_segment_2
)
<<
std
::
endl
;
if
(
interface_mesh
.
getNbElement
(
_segment_2
)
!=
2
)
return
EXIT_FAILURE
;
Vector
<
Real
>
bary
(
2
),
bary1
(
2
),
bary2
(
2
);
Element
test
;
test
.
type
=
_segment_2
;
test
.
element
=
0
;
interface_mesh
.
getBarycenter
(
test
,
bary1
);
test
.
element
=
1
;
interface_mesh
.
getBarycenter
(
test
,
bary2
);
Real
first_bary
[]
=
{
1.
/
6.
,
1.
/
6.
,
1.
/
6.
};
Real
second_bary
[]
=
{
2.
/
3.
,
2.
/
3.
,
2.
/
3.
};
// We don't know the order of the elements, so here we test permutations
if
(
!
(
(
Math
::
are_vector_equal
(
3
,
bary1
.
storage
(),
first_bary
)
&&
Math
::
are_vector_equal
(
3
,
bary2
.
storage
(),
second_bary
)
)
||
(
Math
::
are_vector_equal
(
3
,
bary1
.
storage
(),
second_bary
)
&&
Math
::
are_vector_equal
(
3
,
bary2
.
storage
(),
first_bary
)
)
))
return
EXIT_FAILURE
;
// Testing a segment completely inside one element
Point
a
(
0.05
,
0.05
,
0.05
),
b
(
0.06
,
0.06
,
0.06
);
Segment
inside_segment
(
a
,
b
);
intersector
.
computeIntersectionQuery
(
inside_segment
);
test
.
element
=
interface_mesh
.
getNbElement
(
_segment_2
)
-
1
;
interface_mesh
.
getBarycenter
(
test
,
bary
);
Real
third_bary
[]
=
{
0.055
,
0.055
,
0.055
};
if
(
!
Math
::
are_vector_equal
(
3
,
bary
.
storage
(),
third_bary
))
return
EXIT_FAILURE
;
// Testing a segment whose end points are inside elements
Point
c
(
0.1
,
0.1
,
0.1
),
d
(
0.9
,
0.9
,
0.9
);
Segment
crossing_segment
(
c
,
d
);
intersector
.
computeIntersectionQuery
(
crossing_segment
);
UInt
el1
=
interface_mesh
.
getNbElement
(
_segment_2
)
-
2
;
UInt
el2
=
el1
+
1
;
test
.
element
=
el1
;
interface_mesh
.
getBarycenter
(
test
,
bary1
);
test
.
element
=
el2
;
interface_mesh
.
getBarycenter
(
test
,
bary2
);
Real
fourth_bary
[]
=
{
13.
/
60.
,
13.
/
60.
,
13.
/
60.
};
Real
fifth_bary
[]
=
{
37.
/
60.
,
37.
/
60.
,
37.
/
60.
};
// We don't know the order of the elements, so here we test permutations
if
(
!
(
(
Math
::
are_vector_equal
(
3
,
bary1
.
storage
(),
fourth_bary
)
&&
Math
::
are_vector_equal
(
3
,
bary2
.
storage
(),
fifth_bary
)
)
||
(
Math
::
are_vector_equal
(
3
,
bary1
.
storage
(),
fifth_bary
)
&&
Math
::
are_vector_equal
(
3
,
bary2
.
storage
(),
fourth_bary
)
)
))
return
EXIT_FAILURE
;
// Testing a segment along the edge of elements
Point
e
(
1
,
0
,
0
),
f
(
0
,
1
,
0
);
Segment
edge_segment
(
e
,
f
);
UInt
current_nb_elements
=
interface_mesh
.
getNbElement
(
_segment_2
);
intersector
.
computeIntersectionQuery
(
edge_segment
);
if
(
interface_mesh
.
getNbElement
(
_segment_2
)
!=
current_nb_elements
+
1
)
return
EXIT_FAILURE
;
test
.
element
=
interface_mesh
.
getNbElement
(
_segment_2
)
-
1
;
interface_mesh
.
getBarycenter
(
test
,
bary
);
Real
sixth_bary
[]
=
{
0.5
,
0.5
,
0
};
if
(
!
Math
::
are_vector_equal
(
3
,
bary
.
storage
(),
sixth_bary
))
return
EXIT_FAILURE
;
return
EXIT_SUCCESS
;
}
Event Timeline
Log In to Comment