Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90891130
shape_functions_inline_impl.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 17:24
Size
21 KB
Mime Type
text/x-c++
Expires
Thu, Nov 7, 17:24 (2 d)
Engine
blob
Format
Raw Data
Handle
22152390
Attached To
rAKA akantu
shape_functions_inline_impl.cc
View Options
/**
* @file shape_functions_inline_impl.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Fabian Barras <fabian.barras@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Wed Oct 27 2010
* @date last modification: Thu Oct 15 2015
*
* @brief ShapeFunctions inline implementation
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
__END_AKANTU__
#include "fe_engine.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
inline
UInt
ShapeFunctions
::
getShapeSize
(
const
ElementType
&
type
)
{
AKANTU_DEBUG_IN
();
UInt
shape_size
=
0
;
#define GET_SHAPE_SIZE(type) shape_size = ElementClass<type>::getShapeSize()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_SHAPE_SIZE
);
// ,
#undef GET_SHAPE_SIZE
AKANTU_DEBUG_OUT
();
return
shape_size
;
}
/* -------------------------------------------------------------------------- */
inline
UInt
ShapeFunctions
::
getShapeDerivativesSize
(
const
ElementType
&
type
)
{
AKANTU_DEBUG_IN
();
UInt
shape_derivatives_size
=
0
;
#define GET_SHAPE_DERIVATIVES_SIZE(type) \
shape_derivatives_size = ElementClass<type>::getShapeDerivativesSize()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_SHAPE_DERIVATIVES_SIZE
);
// ,
#undef GET_SHAPE_DERIVATIVES_SIZE
AKANTU_DEBUG_OUT
();
return
shape_derivatives_size
;
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeFunctions
::
setIntegrationPointsByType
(
const
Matrix
<
Real
>
&
points
,
const
GhostType
&
ghost_type
)
{
integration_points
(
type
,
ghost_type
).
shallowCopy
(
points
);
}
/* -------------------------------------------------------------------------- */
inline
void
ShapeFunctions
::
initElementalFieldInterpolationFromIntegrationPoints
(
const
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates
,
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates_matrices
,
ElementTypeMapArray
<
Real
>
&
quad_points_coordinates_inv_matrices
,
const
ElementTypeMapArray
<
Real
>
&
quadrature_points_coordinates
,
const
ElementTypeMapArray
<
UInt
>
*
element_filter
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
for
(
ghost_type_t
::
iterator
gt
=
ghost_type_t
::
begin
();
gt
!=
ghost_type_t
::
end
();
++
gt
)
{
GhostType
ghost_type
=
*
gt
;
Mesh
::
type_iterator
it
,
last
;
if
(
element_filter
)
{
it
=
element_filter
->
firstType
(
spatial_dimension
,
ghost_type
);
last
=
element_filter
->
lastType
(
spatial_dimension
,
ghost_type
);
}
else
{
it
=
mesh
.
firstType
(
spatial_dimension
,
ghost_type
);
last
=
mesh
.
lastType
(
spatial_dimension
,
ghost_type
);
}
for
(;
it
!=
last
;
++
it
)
{
ElementType
type
=
*
it
;
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
if
(
nb_element
==
0
)
continue
;
const
Array
<
UInt
>
*
elem_filter
;
if
(
element_filter
)
elem_filter
=
&
((
*
element_filter
)(
type
,
ghost_type
));
else
elem_filter
=
&
(
empty_filter
);
#define AKANTU_INIT_ELEMENTAL_FIELD_INTERPOLATION_FROM_C_POINTS(type) \
initElementalFieldInterpolationFromIntegrationPoints<type>( \
interpolation_points_coordinates(type, ghost_type), \
interpolation_points_coordinates_matrices, \
quad_points_coordinates_inv_matrices, \
quadrature_points_coordinates(type, ghost_type), ghost_type, \
*elem_filter)
AKANTU_BOOST_REGULAR_ELEMENT_SWITCH
(
AKANTU_INIT_ELEMENTAL_FIELD_INTERPOLATION_FROM_C_POINTS
);
#undef AKANTU_INIT_ELEMENTAL_FIELD_INTERPOLATION_FROM_C_POINTS
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
inline
void
ShapeFunctions
::
initElementalFieldInterpolationFromIntegrationPoints
(
const
Array
<
Real
>
&
interpolation_points_coordinates
,
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates_matrices
,
ElementTypeMapArray
<
Real
>
&
quad_points_coordinates_inv_matrices
,
const
Array
<
Real
>
&
quadrature_points_coordinates
,
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
element_filter
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
UInt
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_element_filter
;
if
(
element_filter
==
empty_filter
)
nb_element_filter
=
nb_element
;
else
nb_element_filter
=
element_filter
.
getSize
();
UInt
nb_quad_per_element
=
GaussIntegrationElement
<
type
>::
getNbQuadraturePoints
();
UInt
nb_interpolation_points_per_elem
=
interpolation_points_coordinates
.
getSize
()
/
nb_element
;
AKANTU_DEBUG_ASSERT
(
interpolation_points_coordinates
.
getSize
()
%
nb_element
==
0
,
"Number of interpolation points should be a multiple of "
"total number of elements"
);
if
(
!
quad_points_coordinates_inv_matrices
.
exists
(
type
,
ghost_type
))
quad_points_coordinates_inv_matrices
.
alloc
(
nb_element_filter
,
nb_quad_per_element
*
nb_quad_per_element
,
type
,
ghost_type
);
else
quad_points_coordinates_inv_matrices
(
type
,
ghost_type
)
.
resize
(
nb_element_filter
);
if
(
!
interpolation_points_coordinates_matrices
.
exists
(
type
,
ghost_type
))
interpolation_points_coordinates_matrices
.
alloc
(
nb_element_filter
,
nb_interpolation_points_per_elem
*
nb_quad_per_element
,
type
,
ghost_type
);
else
interpolation_points_coordinates_matrices
(
type
,
ghost_type
)
.
resize
(
nb_element_filter
);
Array
<
Real
>
&
quad_inv_mat
=
quad_points_coordinates_inv_matrices
(
type
,
ghost_type
);
Array
<
Real
>
&
interp_points_mat
=
interpolation_points_coordinates_matrices
(
type
,
ghost_type
);
Matrix
<
Real
>
quad_coord_matrix
(
nb_quad_per_element
,
nb_quad_per_element
);
Array
<
Real
>::
const_matrix_iterator
quad_coords_it
=
quadrature_points_coordinates
.
begin_reinterpret
(
spatial_dimension
,
nb_quad_per_element
,
nb_element_filter
);
Array
<
Real
>::
const_matrix_iterator
points_coords_begin
=
interpolation_points_coordinates
.
begin_reinterpret
(
spatial_dimension
,
nb_interpolation_points_per_elem
,
nb_element
);
Array
<
Real
>::
matrix_iterator
inv_quad_coord_it
=
quad_inv_mat
.
begin
(
nb_quad_per_element
,
nb_quad_per_element
);
Array
<
Real
>::
matrix_iterator
int_points_mat_it
=
interp_points_mat
.
begin
(
nb_interpolation_points_per_elem
,
nb_quad_per_element
);
/// loop over the elements of the current material and element type
for
(
UInt
el
=
0
;
el
<
nb_element_filter
;
++
el
,
++
inv_quad_coord_it
,
++
int_points_mat_it
,
++
quad_coords_it
)
{
/// matrix containing the quadrature points coordinates
const
Matrix
<
Real
>
&
quad_coords
=
*
quad_coords_it
;
/// matrix to store the matrix inversion result
Matrix
<
Real
>
&
inv_quad_coord_matrix
=
*
inv_quad_coord_it
;
/// insert the quad coordinates in a matrix compatible with the
/// interpolation
buildElementalFieldInterpolationMatrix
<
type
>
(
quad_coords
,
quad_coord_matrix
);
/// invert the interpolation matrix
inv_quad_coord_matrix
.
inverse
(
quad_coord_matrix
);
/// matrix containing the interpolation points coordinates
const
Matrix
<
Real
>
&
points_coords
=
points_coords_begin
[
element_filter
(
el
)];
/// matrix to store the interpolation points coordinates
/// compatible with these functions
Matrix
<
Real
>
&
inv_points_coord_matrix
=
*
int_points_mat_it
;
/// insert the quad coordinates in a matrix compatible with the
/// interpolation
buildElementalFieldInterpolationMatrix
<
type
>
(
points_coords
,
inv_points_coord_matrix
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
inline
void
ShapeFunctions
::
buildInterpolationMatrix
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
switch
(
integration_order
)
{
case
1
:
{
for
(
UInt
i
=
0
;
i
<
coordinates
.
cols
();
++
i
)
coordMatrix
(
i
,
0
)
=
1
;
break
;
}
case
2
:
{
UInt
nb_quadrature_points
=
coordMatrix
.
cols
();
for
(
UInt
i
=
0
;
i
<
coordinates
.
cols
();
++
i
)
{
coordMatrix
(
i
,
0
)
=
1
;
for
(
UInt
j
=
1
;
j
<
nb_quadrature_points
;
++
j
)
coordMatrix
(
i
,
j
)
=
coordinates
(
j
-
1
,
i
);
}
break
;
}
default
:
{
AKANTU_DEBUG_TO_IMPLEMENT
();
break
;
}
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
(
__attribute__
((
unused
))
const
Matrix
<
Real
>
&
coordinates
,
__attribute__
((
unused
))
Matrix
<
Real
>
&
coordMatrix
,
__attribute__
((
unused
))
UInt
integration_order
)
const
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_segment_2
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
buildInterpolationMatrix
(
coordinates
,
coordMatrix
,
integration_order
);
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_segment_3
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
buildInterpolationMatrix
(
coordinates
,
coordMatrix
,
integration_order
);
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_triangle_3
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
buildInterpolationMatrix
(
coordinates
,
coordMatrix
,
integration_order
);
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_triangle_6
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
buildInterpolationMatrix
(
coordinates
,
coordMatrix
,
integration_order
);
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_tetrahedron_4
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
buildInterpolationMatrix
(
coordinates
,
coordMatrix
,
integration_order
);
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_tetrahedron_10
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
buildInterpolationMatrix
(
coordinates
,
coordMatrix
,
integration_order
);
}
/**
* @todo Write a more efficient interpolation for quadrangles by
* dropping unnecessary quadrature points
*
*/
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_quadrangle_4
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
if
(
integration_order
!=
ElementClassProperty
<
_quadrangle_4
>::
polynomial_degree
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
else
{
for
(
UInt
i
=
0
;
i
<
coordinates
.
cols
();
++
i
)
{
Real
x
=
coordinates
(
0
,
i
);
Real
y
=
coordinates
(
1
,
i
);
coordMatrix
(
i
,
0
)
=
1
;
coordMatrix
(
i
,
1
)
=
x
;
coordMatrix
(
i
,
2
)
=
y
;
coordMatrix
(
i
,
3
)
=
x
*
y
;
}
}
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
ShapeFunctions
::
buildElementalFieldInterpolationMatrix
<
_quadrangle_8
>
(
const
Matrix
<
Real
>
&
coordinates
,
Matrix
<
Real
>
&
coordMatrix
,
UInt
integration_order
)
const
{
if
(
integration_order
!=
ElementClassProperty
<
_quadrangle_8
>::
polynomial_degree
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
else
{
for
(
UInt
i
=
0
;
i
<
coordinates
.
cols
();
++
i
)
{
UInt
j
=
0
;
Real
x
=
coordinates
(
0
,
i
);
Real
y
=
coordinates
(
1
,
i
);
for
(
UInt
e
=
0
;
e
<=
2
;
++
e
)
{
for
(
UInt
n
=
0
;
n
<=
2
;
++
n
)
{
coordMatrix
(
i
,
j
)
=
std
::
pow
(
x
,
e
)
*
std
::
pow
(
y
,
n
);
++
j
;
}
}
}
}
}
/* -------------------------------------------------------------------------- */
void
ShapeFunctions
::
interpolateElementalFieldFromIntegrationPoints
(
const
ElementTypeMapArray
<
Real
>
&
field
,
const
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates_matrices
,
const
ElementTypeMapArray
<
Real
>
&
quad_points_coordinates_inv_matrices
,
ElementTypeMapArray
<
Real
>
&
result
,
const
GhostType
ghost_type
,
const
ElementTypeMapArray
<
UInt
>
*
element_filter
)
const
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
Mesh
::
type_iterator
it
,
last
;
if
(
element_filter
)
{
it
=
element_filter
->
firstType
(
spatial_dimension
,
ghost_type
);
last
=
element_filter
->
lastType
(
spatial_dimension
,
ghost_type
);
}
else
{
it
=
mesh
.
firstType
(
spatial_dimension
,
ghost_type
);
last
=
mesh
.
lastType
(
spatial_dimension
,
ghost_type
);
}
for
(;
it
!=
last
;
++
it
)
{
ElementType
type
=
*
it
;
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
if
(
nb_element
==
0
)
continue
;
const
Array
<
UInt
>
*
elem_filter
;
if
(
element_filter
)
elem_filter
=
&
((
*
element_filter
)(
type
,
ghost_type
));
else
elem_filter
=
&
(
empty_filter
);
#define AKANTU_INTERPOLATE_ELEMENTAL_FIELD_FROM_C_POINTS(type) \
interpolateElementalFieldFromIntegrationPoints<type>( \
field(type, ghost_type), \
interpolation_points_coordinates_matrices(type, ghost_type), \
quad_points_coordinates_inv_matrices(type, ghost_type), result, \
ghost_type, *elem_filter)
AKANTU_BOOST_REGULAR_ELEMENT_SWITCH
(
AKANTU_INTERPOLATE_ELEMENTAL_FIELD_FROM_C_POINTS
);
#undef AKANTU_INTERPOLATE_ELEMENTAL_FIELD_FROM_C_POINTS
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
inline
void
ShapeFunctions
::
interpolateElementalFieldFromIntegrationPoints
(
const
Array
<
Real
>
&
field
,
const
Array
<
Real
>
&
interpolation_points_coordinates_matrices
,
const
Array
<
Real
>
&
quad_points_coordinates_inv_matrices
,
ElementTypeMapArray
<
Real
>
&
result
,
const
GhostType
ghost_type
,
const
Array
<
UInt
>
&
element_filter
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_quad_per_element
=
GaussIntegrationElement
<
type
>::
getNbQuadraturePoints
();
UInt
nb_interpolation_points_per_elem
=
interpolation_points_coordinates_matrices
.
getNbComponent
()
/
nb_quad_per_element
;
if
(
!
result
.
exists
(
type
,
ghost_type
))
result
.
alloc
(
nb_element
*
nb_interpolation_points_per_elem
,
field
.
getNbComponent
(),
type
,
ghost_type
);
if
(
element_filter
!=
empty_filter
)
nb_element
=
element_filter
.
getSize
();
Matrix
<
Real
>
coefficients
(
nb_quad_per_element
,
field
.
getNbComponent
());
Array
<
Real
>
&
result_vec
=
result
(
type
,
ghost_type
);
Array
<
Real
>::
const_matrix_iterator
field_it
=
field
.
begin_reinterpret
(
field
.
getNbComponent
(),
nb_quad_per_element
,
nb_element
);
Array
<
Real
>::
const_matrix_iterator
interpolation_points_coordinates_it
=
interpolation_points_coordinates_matrices
.
begin
(
nb_interpolation_points_per_elem
,
nb_quad_per_element
);
Array
<
Real
>::
matrix_iterator
result_begin
=
result_vec
.
begin_reinterpret
(
field
.
getNbComponent
(),
nb_interpolation_points_per_elem
,
result_vec
.
getSize
()
/
nb_interpolation_points_per_elem
);
Array
<
Real
>::
const_matrix_iterator
inv_quad_coord_it
=
quad_points_coordinates_inv_matrices
.
begin
(
nb_quad_per_element
,
nb_quad_per_element
);
/// loop over the elements of the current filter and element type
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
field_it
,
++
inv_quad_coord_it
,
++
interpolation_points_coordinates_it
)
{
/**
* matrix containing the inversion of the quadrature points'
* coordinates
*/
const
Matrix
<
Real
>
&
inv_quad_coord_matrix
=
*
inv_quad_coord_it
;
/**
* multiply it by the field values over quadrature points to get
* the interpolation coefficients
*/
coefficients
.
mul
<
false
,
true
>
(
inv_quad_coord_matrix
,
*
field_it
);
/// matrix containing the points' coordinates
const
Matrix
<
Real
>
&
coord
=
*
interpolation_points_coordinates_it
;
/// multiply the coordinates matrix by the coefficients matrix and store the
/// result
Matrix
<
Real
>
res
(
result_begin
[
element_filter
(
el
)]);
res
.
mul
<
true
,
true
>
(
coefficients
,
coord
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
inline
void
ShapeFunctions
::
interpolateElementalFieldOnIntegrationPoints
(
const
Array
<
Real
>
&
u_el
,
Array
<
Real
>
&
uq
,
GhostType
ghost_type
,
const
Array
<
Real
>
&
shapes
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
UInt
nb_element
;
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getShapeSize
();
UInt
nb_points
=
shapes
.
getSize
()
/
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_degree_of_freedom
=
u_el
.
getNbComponent
()
/
nb_nodes_per_element
;
Array
<
Real
>::
const_matrix_iterator
N_it
;
Array
<
Real
>::
const_matrix_iterator
u_it
;
Array
<
Real
>::
matrix_iterator
inter_u_it
;
Array
<
Real
>
*
filtered_N
=
NULL
;
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
getSize
();
filtered_N
=
new
Array
<
Real
>
(
nb_element
,
shapes
.
getNbComponent
());
FEEngine
::
filterElementalData
(
mesh
,
shapes
,
*
filtered_N
,
type
,
ghost_type
,
filter_elements
);
N_it
=
filtered_N
->
begin_reinterpret
(
nb_nodes_per_element
,
nb_points
,
nb_element
);
}
else
{
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
N_it
=
shapes
.
begin_reinterpret
(
nb_nodes_per_element
,
nb_points
,
nb_element
);
}
uq
.
resize
(
nb_element
*
nb_points
);
u_it
=
u_el
.
begin
(
nb_degree_of_freedom
,
nb_nodes_per_element
);
inter_u_it
=
uq
.
begin_reinterpret
(
nb_degree_of_freedom
,
nb_points
,
nb_element
);
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
N_it
,
++
u_it
,
++
inter_u_it
)
{
const
Matrix
<
Real
>
&
u
=
*
u_it
;
const
Matrix
<
Real
>
&
N
=
*
N_it
;
Matrix
<
Real
>
&
inter_u
=
*
inter_u_it
;
inter_u
.
mul
<
false
,
false
>
(
u
,
N
);
}
delete
filtered_N
;
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeFunctions
::
gradientElementalFieldOnIntegrationPoints
(
const
Array
<
Real
>
&
u_el
,
Array
<
Real
>
&
out_nablauq
,
GhostType
ghost_type
,
const
Array
<
Real
>
&
shapes_derivatives
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
nb_points
=
integration_points
(
type
,
ghost_type
).
cols
();
UInt
element_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
UInt
nb_degree_of_freedom
=
u_el
.
getNbComponent
()
/
nb_nodes_per_element
;
Array
<
Real
>::
const_matrix_iterator
B_it
;
Array
<
Real
>::
const_matrix_iterator
u_it
;
Array
<
Real
>::
matrix_iterator
nabla_u_it
;
UInt
nb_element
;
Array
<
Real
>
*
filtered_B
=
NULL
;
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
getSize
();
filtered_B
=
new
Array
<
Real
>
(
nb_element
,
shapes_derivatives
.
getNbComponent
());
FEEngine
::
filterElementalData
(
mesh
,
shapes_derivatives
,
*
filtered_B
,
type
,
ghost_type
,
filter_elements
);
B_it
=
filtered_B
->
begin
(
element_dimension
,
nb_nodes_per_element
);
}
else
{
B_it
=
shapes_derivatives
.
begin
(
element_dimension
,
nb_nodes_per_element
);
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
}
out_nablauq
.
resize
(
nb_element
*
nb_points
);
u_it
=
u_el
.
begin
(
nb_degree_of_freedom
,
nb_nodes_per_element
);
nabla_u_it
=
out_nablauq
.
begin
(
nb_degree_of_freedom
,
element_dimension
);
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
u_it
)
{
const
Matrix
<
Real
>
&
u
=
*
u_it
;
for
(
UInt
q
=
0
;
q
<
nb_points
;
++
q
,
++
B_it
,
++
nabla_u_it
)
{
const
Matrix
<
Real
>
&
B
=
*
B_it
;
Matrix
<
Real
>
&
nabla_u
=
*
nabla_u_it
;
nabla_u
.
mul
<
false
,
true
>
(
u
,
B
);
}
}
delete
filtered_B
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Event Timeline
Log In to Comment