Page MenuHomec4science

solid_phase_coupler.cc
No OneTemporary

File Metadata

Created
Wed, Jul 17, 01:48

solid_phase_coupler.cc

/**
* @file solid_phase_coupler.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Fri Sep 28 2018
* @date last modification: Fri Sep 28 2018
*
* @brief class for coupling of solid mechancis and phasefield model
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "solid_phase_coupler.hh"
#include "non_linear_solver.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
template<typename SolidType, typename PhaseType>
SolidPhaseCoupler<SolidType, PhaseType>::SolidPhaseCoupler(SolidType & solid, PhaseType & phase)
: solid(solid), phase(phase) {
this->spatial_dimension = solid.getMesh().getSpatialDimension();
}
/* -------------------------------------------------------------------------- */
template<typename SolidType, typename PhaseType>
SolidPhaseCoupler<SolidType, PhaseType>::~SolidPhaseCoupler() {
}
/* -------------------------------------------------------------------------- */
template<typename SolidType, typename PhaseType>
void SolidPhaseCoupler<SolidType, PhaseType>::computeDamageOnQuadPoints(const GhostType & ghost_type) {
AKANTU_DEBUG_IN();
auto & fem = phase.getFEEngine();
auto & mesh = phase.getMesh();
switch (spatial_dimension) {
case 1: {
auto & mat = static_cast<MaterialPhaseField<1> &>(solid.getMaterial(0));
auto & damage = mat.getDamage();
for (auto & type: mesh.elementTypes(this->spatial_dimension, ghost_type)) {
auto & damage_on_qpoints_vect = damage(type, ghost_type);
fem.interpolateOnIntegrationPoints(phase.getDamage(), damage_on_qpoints_vect,
1, type, ghost_type);
}
break;
}
case 2: {
auto & mat = static_cast<MaterialPhaseField<2> &>(solid.getMaterial(0));
auto & damage = mat.getDamage();
for (auto & type: mesh.elementTypes(this->spatial_dimension, ghost_type)) {
auto & damage_on_qpoints_vect = damage(type, ghost_type);
fem.interpolateOnIntegrationPoints(phase.getDamage(), damage_on_qpoints_vect,
1, type, ghost_type);
}
break;
}
default:
auto & mat = static_cast<MaterialPhaseField<3> &>(solid.getMaterial(0));
break;
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<typename SolidType,typename PhaseType>
void SolidPhaseCoupler<SolidType, PhaseType>::computeStrainOnQuadPoints(const GhostType & ghost_type) {
AKANTU_DEBUG_IN();
auto & mesh = solid.getMesh();
auto & strain_on_qpoints = phase.getStrain();
auto & gradu_on_qpoints = solid.getMaterial(0).getGradU();
for (auto & type: mesh.elementTypes(spatial_dimension, ghost_type)) {
auto & strain_on_qpoints_vect = strain_on_qpoints(type, ghost_type);
auto & gradu_on_qpoints_vect = gradu_on_qpoints(type, ghost_type);
for (auto && values:
zip(make_view(strain_on_qpoints_vect, this->spatial_dimension, this->spatial_dimension),
make_view(gradu_on_qpoints_vect, this->spatial_dimension, this->spatial_dimension))) {
auto & strain = std::get<0>(values);
auto & grad_u = std::get<1>(values);
this->gradUToEpsilon(grad_u, strain);
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<typename SolidType, typename PhaseType>
void SolidPhaseCoupler<SolidType, PhaseType>::solve() {
this->convergence = true;
UInt iter = 0;
UInt max_iter = 10;
while(iter < max_iter) {
auto u_old = solid.getDisplacement();
auto d_old = phase.getDamage();
std::cerr << "---- solving solid model ------ \n";
solid.solveStep();
this->computeStrainOnQuadPoints(_not_ghost);
std::cerr << "---- solving phasefield model ------ \n";
phase.solveStep();
this->computeDamageOnQuadPoints(_not_ghost);
auto u_new = solid.getDisplacement();
auto d_new = phase.getDamage();
//auto u_new = solid.getDOFManager().getDOFs("displacement");
//auto u_old = solid.getDOFManager().getPreviousDOFs("displacement");
//auto d_new = phase.getDOFManager().getDOFs("damage");
//auto d_old = phase.getDOFManager().getPreviousDOFs("damage");
this->checkConvergence(u_new, u_old, d_new, d_old);
if (this->convergence) {
break;
}
iter++;
}
}
/* -------------------------------------------------------------------------- */
template<typename SolidType, typename PhaseType>
void SolidPhaseCoupler<SolidType, PhaseType>::gradUToEpsilon(const Matrix<Real> & grad_u,
Matrix<Real> & epsilon) {
for (UInt i=0; i < this->spatial_dimension; ++i) {
for (UInt j = 0; j < this->spatial_dimension; ++j)
epsilon(i, j) = 0.5 * (grad_u(i, j) + grad_u(j, i));
}
}
/* -------------------------------------------------------------------------- */
template<typename SolidType, typename PhaseType>
bool SolidPhaseCoupler<SolidType, PhaseType>::checkConvergence(Array<Real> & u_new, Array<Real> & u_old, Array<Real> & d_new, Array<Real> & d_old) {
const Array<bool> & blocked_dofs = solid.getBlockedDOFs();
UInt nb_degree_of_freedom = u_new.size();
auto u_n_it = u_new.begin();
auto u_o_it = u_old.begin();
auto bld_it = blocked_dofs.begin();
Real norm = 0;
for (UInt n = 0; n < nb_degree_of_freedom; ++n, ++u_n_it, ++u_o_it, ++bld_it) {
if ((!*bld_it)) {
norm += (*u_n_it - *u_o_it) * (*u_n_it - *u_o_it);
}
}
norm = std::sqrt(norm);
auto d_n_it = d_new.begin();
auto d_o_it = d_old.begin();
nb_degree_of_freedom = d_new.size();
Real norm2 = 0;
for (UInt i = 0; i < nb_degree_of_freedom; ++i) {
norm2 += (*d_n_it - *d_o_it);
}
norm2 =std::sqrt(norm2);
Real error = std::max(norm, norm2);
Real tolerance = 1e-8;
if (error < tolerance) {
this->convergence = true;
}
}
template class SolidPhaseCoupler<SolidMechanicsModel, PhaseFieldModel>;
} // akantu

Event Timeline