Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98214276
material_igfem.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Jan 11, 03:14
Size
12 KB
Mime Type
text/x-c
Expires
Mon, Jan 13, 03:14 (2 d)
Engine
blob
Format
Raw Data
Handle
23507531
Attached To
rAKA akantu
material_igfem.cc
View Options
/**
* @file element_class_igfem.hh
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
*
* @brief Implementation parent material for IGFEM
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
*/
#include "material_igfem.hh"
#include "aka_math.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
MaterialIGFEM
::
MaterialIGFEM
(
SolidMechanicsModel
&
model
,
const
ID
&
id
)
:
Material
(
model
,
id
),
nb_sub_materials
(
2
),
sub_material
(
"sub_material"
,
*
this
),
name_sub_mat_1
(
""
),
name_sub_mat_2
(
""
)
{
AKANTU_DEBUG_IN
();
this
->
model
=
dynamic_cast
<
SolidMechanicsModelIGFEM
*>
(
&
model
);
this
->
fem
=
&
(
model
.
getFEEngineClass
<
MyFEEngineIGFEMType
>
(
"IGFEMFEEngine"
));
this
->
model
->
getMesh
().
initElementTypeMapArray
(
element_filter
,
1
,
spatial_dimension
,
false
,
_ek_igfem
);
this
->
initialize
();
AKANTU_DEBUG_OUT
();
};
/* -------------------------------------------------------------------------- */
MaterialIGFEM
::~
MaterialIGFEM
()
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
MaterialIGFEM
::
initialize
()
{
this
->
gradu
.
setElementKind
(
_ek_igfem
);
this
->
stress
.
setElementKind
(
_ek_igfem
);
this
->
eigengradu
.
setElementKind
(
_ek_igfem
);
this
->
gradu
.
setFEEngine
(
*
fem
);
this
->
stress
.
setFEEngine
(
*
fem
);
this
->
eigengradu
.
setFEEngine
(
*
fem
);
registerParam
(
"name_sub_mat_1"
,
name_sub_mat_1
,
std
::
string
(),
_pat_parsable
|
_pat_readable
);
registerParam
(
"name_sub_mat_2"
,
name_sub_mat_2
,
std
::
string
(),
_pat_parsable
|
_pat_readable
);
this
->
sub_material
.
initialize
(
1
);
}
/* -------------------------------------------------------------------------- */
void
MaterialIGFEM
::
computeQuadraturePointsCoordinates
(
ElementTypeMapArray
<
Real
>
&
quadrature_points_coordinates
,
const
GhostType
&
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
/// compute quadrature points position in undeformed configuration
Array
<
Real
>
&
nodes_coordinates
=
this
->
fem
->
getMesh
().
getNodes
();
Mesh
::
type_iterator
it
=
this
->
element_filter
.
firstType
(
spatial_dimension
,
ghost_type
,
_ek_igfem
);
Mesh
::
type_iterator
last_type
=
this
->
element_filter
.
lastType
(
spatial_dimension
,
ghost_type
,
_ek_igfem
);
for
(;
it
!=
last_type
;
++
it
)
{
const
Array
<
UInt
>
&
elem_filter
=
this
->
element_filter
(
*
it
,
ghost_type
);
UInt
nb_element
=
elem_filter
.
getSize
();
if
(
nb_element
)
{
UInt
nb_tot_quad
=
this
->
fem
->
getNbIntegrationPoints
(
*
it
,
ghost_type
)
*
nb_element
;
Array
<
Real
>
&
quads
=
quadrature_points_coordinates
(
*
it
,
ghost_type
);
quads
.
resize
(
nb_tot_quad
);
this
->
model
->
getFEEngine
(
"IGFEMFEEngine"
).
interpolateOnIntegrationPoints
(
nodes_coordinates
,
quads
,
spatial_dimension
,
*
it
,
ghost_type
,
elem_filter
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/**
* Compute the stress from the gradu
*
* @param[in] current_position nodes postition + displacements
* @param[in] ghost_type compute the residual for _ghost or _not_ghost element
*/
void
MaterialIGFEM
::
computeAllStresses
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
model
->
getSpatialDimension
();
Mesh
::
type_iterator
it
=
this
->
fem
->
getMesh
().
firstType
(
spatial_dimension
,
ghost_type
,
_ek_igfem
);
Mesh
::
type_iterator
last_type
=
this
->
fem
->
getMesh
().
lastType
(
spatial_dimension
,
ghost_type
,
_ek_igfem
);
for
(;
it
!=
last_type
;
++
it
)
{
Array
<
UInt
>
&
elem_filter
=
element_filter
(
*
it
,
ghost_type
);
if
(
elem_filter
.
getSize
())
{
Array
<
Real
>
&
gradu_vect
=
gradu
(
*
it
,
ghost_type
);
/// compute @f$\nabla u@f$
this
->
fem
->
gradientOnIntegrationPoints
(
model
->
getDisplacement
(),
gradu_vect
,
spatial_dimension
,
*
it
,
ghost_type
,
elem_filter
);
gradu_vect
-=
eigengradu
(
*
it
,
ghost_type
);
/// compute @f$\mathbf{\sigma}_q@f$ from @f$\nabla u@f$
computeStress
(
*
it
,
ghost_type
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/// extrapolate internal values
void
MaterialIGFEM
::
extrapolateInternal
(
const
ID
&
id
,
const
Element
&
element
,
const
Matrix
<
Real
>
&
point
,
Matrix
<
Real
>
&
extrapolated
)
{
if
(
this
->
isInternal
<
Real
>
(
id
,
element
.
kind
))
{
UInt
nb_element
=
this
->
element_filter
(
element
.
type
,
element
.
ghost_type
).
getSize
();
const
ID
name
=
this
->
getID
()
+
":"
+
id
;
UInt
nb_quads
=
this
->
internal_vectors_real
[
name
]
->
getFEEngine
().
getNbIntegrationPoints
(
element
.
type
,
element
.
ghost_type
);
const
Array
<
Real
>
&
internal
=
this
->
getArray
<
Real
>
(
id
,
element
.
type
,
element
.
ghost_type
);
UInt
nb_component
=
internal
.
getNbComponent
();
Array
<
Real
>::
const_matrix_iterator
internal_it
=
internal
.
begin_reinterpret
(
nb_component
,
nb_quads
,
nb_element
);
Element
local_element
=
this
->
convertToLocalElement
(
element
);
/// instead of really extrapolating, here the value of the first GP
/// is copied into the result vector. This works only for linear
/// elements
/// @todo extrapolate!!!!
AKANTU_DEBUG_WARNING
(
"This is a fix, values are not truly extrapolated"
);
const
Matrix
<
Real
>
&
values
=
internal_it
[
local_element
.
element
];
UInt
index
=
0
;
Vector
<
Real
>
tmp
(
nb_component
);
for
(
UInt
j
=
0
;
j
<
values
.
cols
();
++
j
)
{
tmp
=
values
(
j
);
if
(
tmp
.
norm
()
>
Math
::
getTolerance
())
{
index
=
j
;
break
;
}
}
for
(
UInt
i
=
0
;
i
<
extrapolated
.
size
();
++
i
)
{
extrapolated
(
i
)
=
values
(
index
);
}
}
else
{
Matrix
<
Real
>
default_values
(
extrapolated
.
rows
(),
extrapolated
.
cols
(),
0.
);
extrapolated
=
default_values
;
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
MaterialIGFEM
::
setSubMaterial
(
const
Array
<
Element
>
&
element_list
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
template
<>
void
MaterialIGFEM
::
setSubMaterial
<
_igfem_triangle_5
>
(
const
Array
<
Element
>
&
element_list
,
GhostType
ghost_type
)
{
SolidMechanicsModelIGFEM
*
igfem_model
=
static_cast
<
SolidMechanicsModelIGFEM
*>
(
this
->
model
);
Vector
<
UInt
>
sub_material_index
(
this
->
nb_sub_materials
);
Array
<
Element
>::
const_iterator
<
Element
>
el_begin
=
element_list
.
begin
();
Array
<
Element
>::
const_iterator
<
Element
>
el_end
=
element_list
.
end
();
const
Mesh
&
mesh
=
this
->
model
->
getMesh
();
Array
<
Real
>
nodes_coordinates
(
mesh
.
getNodes
(),
true
);
Array
<
Real
>::
const_vector_iterator
nodes_it
=
nodes_coordinates
.
begin
(
spatial_dimension
);
Element
el
;
el
.
kind
=
_ek_igfem
;
el
.
type
=
_igfem_triangle_5
;
el
.
ghost_type
=
ghost_type
;
UInt
nb_nodes_per_el
=
mesh
.
getNbNodesPerElement
(
el
.
type
);
UInt
nb_parent_nodes
=
IGFEMHelper
::
getNbParentNodes
(
el
.
type
);
Vector
<
bool
>
is_inside
(
nb_parent_nodes
);
const
Array
<
UInt
>
&
connectivity
=
mesh
.
getConnectivity
(
el
.
type
,
ghost_type
);
Array
<
UInt
>::
const_vector_iterator
connec_it
=
connectivity
.
begin
(
nb_nodes_per_el
);
/// get the number of quadrature points for the two sub-elements
UInt
quads_1
=
IGFEMHelper
::
getNbQuadraturePoints
(
el
.
type
,
0
);
UInt
quads_2
=
IGFEMHelper
::
getNbQuadraturePoints
(
el
.
type
,
1
);
UInt
nb_total_quads
=
quads_1
+
quads_2
;
UInt
*
sub_mat_ptr
=
this
->
sub_material
(
el
.
type
,
ghost_type
).
storage
();
/// loop all elements for the given type
const
Array
<
UInt
>
&
filter
=
this
->
element_filter
(
el
.
type
,
ghost_type
);
UInt
nb_elements
=
filter
.
getSize
();
for
(
UInt
e
=
0
;
e
<
nb_elements
;
++
e
,
++
connec_it
)
{
el
.
element
=
filter
(
e
);
if
(
std
::
find
(
el_begin
,
el_end
,
el
)
==
el_end
)
{
sub_mat_ptr
+=
nb_total_quads
;
continue
;
}
for
(
UInt
i
=
0
;
i
<
nb_parent_nodes
;
++
i
)
{
Vector
<
Real
>
node
=
nodes_it
[(
*
connec_it
)(
i
)];
is_inside
(
i
)
=
igfem_model
->
isInside
(
node
,
this
->
name_sub_mat_1
);
}
UInt
orientation
=
IGFEMHelper
::
getElementOrientation
(
el
.
type
,
is_inside
);
switch
(
orientation
)
{
case
0
:
{
sub_material_index
(
0
)
=
0
;
sub_material_index
(
1
)
=
1
;
break
;
}
case
1
:
{
sub_material_index
(
0
)
=
1
;
sub_material_index
(
1
)
=
0
;
break
;
}
case
2
:
{
sub_material_index
(
0
)
=
0
;
sub_material_index
(
1
)
=
0
;
break
;
}
case
3
:
{
sub_material_index
(
0
)
=
1
;
sub_material_index
(
0
)
=
1
;
break
;
}
}
for
(
UInt
q
=
0
;
q
<
quads_1
;
++
q
,
++
sub_mat_ptr
)
{
UInt
index
=
sub_material_index
(
0
);
*
sub_mat_ptr
=
index
;
}
for
(
UInt
q
=
0
;
q
<
quads_2
;
++
q
,
++
sub_mat_ptr
)
{
UInt
index
=
sub_material_index
(
1
);
*
sub_mat_ptr
=
index
;
}
}
}
/* -------------------------------------------------------------------------- */
template
<>
void
MaterialIGFEM
::
setSubMaterial
<
_igfem_triangle_4
>
(
const
Array
<
Element
>
&
element_list
,
GhostType
ghost_type
)
{
SolidMechanicsModelIGFEM
*
igfem_model
=
static_cast
<
SolidMechanicsModelIGFEM
*>
(
this
->
model
);
Vector
<
UInt
>
sub_material_index
(
this
->
nb_sub_materials
);
Array
<
Element
>::
const_iterator
<
Element
>
el_begin
=
element_list
.
begin
();
Array
<
Element
>::
const_iterator
<
Element
>
el_end
=
element_list
.
end
();
const
Mesh
&
mesh
=
this
->
model
->
getMesh
();
Element
el
;
el
.
kind
=
_ek_igfem
;
el
.
ghost_type
=
ghost_type
;
el
.
type
=
_igfem_triangle_4
;
UInt
nb_nodes_per_el
=
mesh
.
getNbNodesPerElement
(
el
.
type
);
Vector
<
Real
>
barycenter
(
spatial_dimension
);
const
Array
<
UInt
>
&
connectivity
=
mesh
.
getConnectivity
(
el
.
type
,
ghost_type
);
Array
<
UInt
>::
const_vector_iterator
connec_it
=
connectivity
.
begin
(
nb_nodes_per_el
);
/// get the number of quadrature points for the two sub-elements
UInt
quads_1
=
IGFEMHelper
::
getNbQuadraturePoints
(
el
.
type
,
0
);
UInt
quads_2
=
IGFEMHelper
::
getNbQuadraturePoints
(
el
.
type
,
1
);
UInt
nb_total_quads
=
quads_1
+
quads_2
;
UInt
*
sub_mat_ptr
=
this
->
sub_material
(
el
.
type
,
ghost_type
).
storage
();
/// loop all elements for the given type
const
Array
<
UInt
>
&
filter
=
this
->
element_filter
(
el
.
type
,
ghost_type
);
UInt
nb_elements
=
filter
.
getSize
();
for
(
UInt
e
=
0
;
e
<
nb_elements
;
++
e
,
++
connec_it
)
{
el
.
element
=
filter
(
e
);
if
(
std
::
find
(
el_begin
,
el_end
,
el
)
==
el_end
)
{
sub_mat_ptr
+=
nb_total_quads
;
continue
;
}
for
(
UInt
s
=
0
;
s
<
this
->
nb_sub_materials
;
++
s
)
{
igfem_model
->
getSubElementBarycenter
(
el
.
element
,
s
,
el
.
type
,
barycenter
,
ghost_type
);
sub_material_index
(
s
)
=
1
-
igfem_model
->
isInside
(
barycenter
,
this
->
name_sub_mat_1
);
}
for
(
UInt
q
=
0
;
q
<
quads_1
;
++
q
,
++
sub_mat_ptr
)
{
UInt
index
=
sub_material_index
(
0
);
*
sub_mat_ptr
=
index
;
}
for
(
UInt
q
=
0
;
q
<
quads_2
;
++
q
,
++
sub_mat_ptr
)
{
UInt
index
=
sub_material_index
(
1
);
*
sub_mat_ptr
=
index
;
}
}
}
/* -------------------------------------------------------------------------- */
void
MaterialIGFEM
::
applyEigenGradU
(
const
Matrix
<
Real
>
&
prescribed_eigen_grad_u
,
const
ID
&
id
,
const
GhostType
ghost_type
)
{
std
::
map
<
UInt
,
ID
>::
const_iterator
sub_mat_it
=
this
->
sub_material_names
.
begin
();
for
(;
sub_mat_it
!=
sub_material_names
.
end
();
++
sub_mat_it
)
{
if
(
sub_mat_it
->
second
==
id
)
{
UInt
sub_element_index
=
sub_mat_it
->
first
;
ElementTypeMapArray
<
UInt
>::
type_iterator
it
=
this
->
element_filter
.
firstType
(
_all_dimensions
,
ghost_type
,
_ek_not_defined
);
ElementTypeMapArray
<
UInt
>::
type_iterator
end
=
element_filter
.
lastType
(
_all_dimensions
,
ghost_type
,
_ek_not_defined
);
for
(;
it
!=
end
;
++
it
)
{
ElementType
type
=
*
it
;
if
(
!
element_filter
(
type
,
ghost_type
).
getSize
())
continue
;
Array
<
Real
>::
matrix_iterator
eigen_it
=
this
->
eigengradu
(
type
,
ghost_type
).
begin
(
spatial_dimension
,
spatial_dimension
);
Array
<
Real
>::
matrix_iterator
eigen_end
=
this
->
eigengradu
(
type
,
ghost_type
).
end
(
spatial_dimension
,
spatial_dimension
);
UInt
*
sub_mat_ptr
=
this
->
sub_material
(
type
,
ghost_type
).
storage
();
for
(;
eigen_it
!=
eigen_end
;
++
eigen_it
,
++
sub_mat_ptr
)
{
if
(
*
sub_mat_ptr
==
sub_element_index
)
{
Matrix
<
Real
>
&
current_eigengradu
=
*
eigen_it
;
current_eigengradu
=
prescribed_eigen_grad_u
;
}
}
}
}
}
}
__END_AKANTU__
Event Timeline
Log In to Comment