Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99434340
mesh_inline_impl.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jan 24, 13:07
Size
19 KB
Mime Type
text/x-c++
Expires
Sun, Jan 26, 13:07 (2 d)
Engine
blob
Format
Raw Data
Handle
23786510
Attached To
rAKA akantu
mesh_inline_impl.cc
View Options
/**
* @file mesh_inline_impl.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Dana Christen <dana.christen@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Thu Jul 15 2010
* @date last modification: Fri Sep 05 2014
*
* @brief Implementation of the inline functions of the mesh class
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#if defined(AKANTU_COHESIVE_ELEMENT)
# include "cohesive_element.hh"
#endif
#if defined(AKANTU_IGFEM)
# include "igfem_element.hh"
#endif
#ifndef __AKANTU_MESH_INLINE_IMPL_CC__
#define __AKANTU_MESH_INLINE_IMPL_CC__
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
inline
RemovedNodesEvent
::
RemovedNodesEvent
(
const
Mesh
&
mesh
)
:
new_numbering
(
mesh
.
getNbNodes
(),
1
,
"new_numbering"
)
{
}
/* -------------------------------------------------------------------------- */
inline
RemovedElementsEvent
::
RemovedElementsEvent
(
const
Mesh
&
mesh
)
:
new_numbering
(
"new_numbering"
,
mesh
.
getID
())
{
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
Mesh
::
sendEvent
<
RemovedElementsEvent
>
(
RemovedElementsEvent
&
event
)
{
connectivities
.
onElementsRemoved
(
event
.
getNewNumbering
());
EventHandlerManager
<
MeshEventHandler
>::
sendEvent
(
event
);
}
/* -------------------------------------------------------------------------- */
template
<>
inline
void
Mesh
::
sendEvent
<
RemovedNodesEvent
>
(
RemovedNodesEvent
&
event
)
{
if
(
created_nodes
)
removeNodesFromArray
(
*
nodes
,
event
.
getNewNumbering
());
if
(
nodes_global_ids
)
removeNodesFromArray
(
*
nodes_global_ids
,
event
.
getNewNumbering
());
if
(
nodes_type
.
getSize
()
!=
0
)
removeNodesFromArray
(
nodes_type
,
event
.
getNewNumbering
());
EventHandlerManager
<
MeshEventHandler
>::
sendEvent
(
event
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
void
Mesh
::
removeNodesFromArray
(
Array
<
T
>
&
vect
,
const
Array
<
UInt
>
&
new_numbering
)
{
Array
<
T
>
tmp
(
vect
.
getSize
(),
vect
.
getNbComponent
());
UInt
nb_component
=
vect
.
getNbComponent
();
UInt
new_nb_nodes
=
0
;
for
(
UInt
i
=
0
;
i
<
new_numbering
.
getSize
();
++
i
)
{
UInt
new_i
=
new_numbering
(
i
);
if
(
new_i
!=
UInt
(
-
1
))
{
memcpy
(
tmp
.
storage
()
+
new_i
*
nb_component
,
vect
.
storage
()
+
i
*
nb_component
,
nb_component
*
sizeof
(
T
));
++
new_nb_nodes
;
}
}
tmp
.
resize
(
new_nb_nodes
);
vect
.
copy
(
tmp
);
}
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_CORE_CXX11
template
<
typename
...
Args
>
inline
void
Mesh
::
translate
(
Args
...
params
)
{
// check that the number of parameters corresponds to the dimension
AKANTU_DEBUG_ASSERT
(
sizeof
...(
Args
)
<=
spatial_dimension
,
"Number of arguments greater than dimension."
);
// unpack parameters
Real
s
[]
=
{
params
...
};
Array
<
Real
>&
nodes
=
getNodes
();
for
(
UInt
i
=
0
;
i
<
nodes
.
getSize
();
++
i
)
for
(
UInt
k
=
0
;
k
<
sizeof
...(
Args
);
++
k
)
nodes
(
i
,
k
)
+=
s
[
k
];
}
#endif
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
elementToLinearized
(
const
Element
&
elem
)
const
{
AKANTU_DEBUG_ASSERT
(
elem
.
type
<
_max_element_type
&&
elem
.
element
<
types_offsets
.
storage
()[
elem
.
type
+
1
],
"The element "
<<
elem
<<
"does not exists in the mesh "
<<
getID
());
return
types_offsets
.
storage
()[
elem
.
type
]
+
elem
.
element
;
}
/* -------------------------------------------------------------------------- */
inline
Element
Mesh
::
linearizedToElement
(
UInt
linearized_element
)
const
{
UInt
t
;
for
(
t
=
_not_defined
;
t
!=
_max_element_type
&&
linearized_element
>=
types_offsets
(
t
);
++
t
);
AKANTU_DEBUG_ASSERT
(
linearized_element
<
types_offsets
(
t
),
"The linearized element "
<<
linearized_element
<<
"does not exists in the mesh "
<<
getID
());
--
t
;
ElementType
type
=
ElementType
(
t
);
return
Element
(
type
,
linearized_element
-
types_offsets
.
storage
()[
t
],
_not_ghost
,
getKind
(
type
));
}
/* -------------------------------------------------------------------------- */
inline
void
Mesh
::
updateTypesOffsets
(
const
GhostType
&
ghost_type
)
{
Array
<
UInt
>
*
types_offsets_ptr
=
&
this
->
types_offsets
;
if
(
ghost_type
==
_ghost
)
types_offsets_ptr
=
&
this
->
ghost_types_offsets
;
Array
<
UInt
>
&
types_offsets
=
*
types_offsets_ptr
;
types_offsets
.
clear
();
type_iterator
it
=
firstType
(
_all_dimensions
,
ghost_type
,
_ek_not_defined
);
type_iterator
last
=
lastType
(
_all_dimensions
,
ghost_type
,
_ek_not_defined
);
for
(;
it
!=
last
;
++
it
)
types_offsets
(
*
it
)
=
connectivities
(
*
it
,
ghost_type
).
getSize
();
for
(
UInt
t
=
_not_defined
+
1
;
t
<
_max_element_type
;
++
t
)
types_offsets
(
t
)
+=
types_offsets
(
t
-
1
);
for
(
UInt
t
=
_max_element_type
;
t
>
_not_defined
;
--
t
)
types_offsets
(
t
)
=
types_offsets
(
t
-
1
);
types_offsets
(
0
)
=
0
;
}
/* -------------------------------------------------------------------------- */
inline
const
Mesh
::
ConnectivityTypeList
&
Mesh
::
getConnectivityTypeList
(
const
GhostType
&
ghost_type
)
const
{
if
(
ghost_type
==
_not_ghost
)
return
type_set
;
else
return
ghost_type_set
;
}
/* -------------------------------------------------------------------------- */
inline
Array
<
UInt
>
*
Mesh
::
getNodesGlobalIdsPointer
()
{
AKANTU_DEBUG_IN
();
if
(
nodes_global_ids
==
NULL
)
{
std
::
stringstream
sstr
;
sstr
<<
getID
()
<<
":nodes_global_ids"
;
nodes_global_ids
=
&
(
alloc
<
UInt
>
(
sstr
.
str
(),
nodes
->
getSize
(),
1
));
}
AKANTU_DEBUG_OUT
();
return
nodes_global_ids
;
}
/* -------------------------------------------------------------------------- */
inline
Array
<
Int
>
*
Mesh
::
getNodesTypePointer
()
{
AKANTU_DEBUG_IN
();
if
(
nodes_type
.
getSize
()
==
0
)
{
nodes_type
.
resize
(
nodes
->
getSize
());
nodes_type
.
set
(
-
1
);
}
AKANTU_DEBUG_OUT
();
return
&
nodes_type
;
}
/* -------------------------------------------------------------------------- */
inline
Array
<
UInt
>
*
Mesh
::
getConnectivityPointer
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
Array
<
UInt
>
*
tmp
;
if
(
!
connectivities
.
exists
(
type
,
ghost_type
))
{
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
tmp
=
&
(
connectivities
.
alloc
(
0
,
nb_nodes_per_element
,
type
,
ghost_type
));
AKANTU_DEBUG_INFO
(
"The connectivity vector for the type "
<<
type
<<
" created"
);
if
(
ghost_type
==
_not_ghost
)
type_set
.
insert
(
type
);
else
ghost_type_set
.
insert
(
type
);
updateTypesOffsets
(
ghost_type
);
}
else
{
tmp
=
&
connectivities
(
type
,
ghost_type
);
}
AKANTU_DEBUG_OUT
();
return
tmp
;
}
/* -------------------------------------------------------------------------- */
inline
Array
<
std
::
vector
<
Element
>
>
*
Mesh
::
getElementToSubelementPointer
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
Array
<
std
::
vector
<
Element
>
>
*
tmp
=
getDataPointer
<
std
::
vector
<
Element
>
>
(
"element_to_subelement"
,
type
,
ghost_type
,
1
,
true
);
return
tmp
;
}
/* -------------------------------------------------------------------------- */
inline
Array
<
Element
>
*
Mesh
::
getSubelementToElementPointer
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
Array
<
Element
>
*
tmp
=
getDataPointer
<
Element
>
(
"subelement_to_element"
,
type
,
ghost_type
,
getNbFacetsPerElement
(
type
),
true
,
is_mesh_facets
);
return
tmp
;
}
/* -------------------------------------------------------------------------- */
inline
const
Array
<
std
::
vector
<
Element
>
>
&
Mesh
::
getElementToSubelement
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
const
{
return
getData
<
std
::
vector
<
Element
>
>
(
"element_to_subelement"
,
type
,
ghost_type
);
}
/* -------------------------------------------------------------------------- */
inline
Array
<
std
::
vector
<
Element
>
>
&
Mesh
::
getElementToSubelement
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
return
getData
<
std
::
vector
<
Element
>
>
(
"element_to_subelement"
,
type
,
ghost_type
);
}
/* -------------------------------------------------------------------------- */
inline
const
Array
<
Element
>
&
Mesh
::
getSubelementToElement
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
const
{
return
getData
<
Element
>
(
"subelement_to_element"
,
type
,
ghost_type
);
}
/* -------------------------------------------------------------------------- */
inline
Array
<
Element
>
&
Mesh
::
getSubelementToElement
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
return
getData
<
Element
>
(
"subelement_to_element"
,
type
,
ghost_type
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
Array
<
T
>
*
Mesh
::
getDataPointer
(
const
std
::
string
&
data_name
,
const
ElementType
&
el_type
,
const
GhostType
&
ghost_type
,
UInt
nb_component
,
bool
size_to_nb_element
,
bool
resize_with_parent
)
{
Array
<
T
>
&
tmp
=
mesh_data
.
getElementalDataArrayAlloc
<
T
>
(
data_name
,
el_type
,
ghost_type
,
nb_component
);
if
(
size_to_nb_element
)
{
if
(
resize_with_parent
)
tmp
.
resize
(
mesh_parent
->
getNbElement
(
el_type
,
ghost_type
));
else
tmp
.
resize
(
this
->
getNbElement
(
el_type
,
ghost_type
));
}
else
{
tmp
.
resize
(
0
);
}
return
&
tmp
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
const
Array
<
T
>
&
Mesh
::
getData
(
const
std
::
string
&
data_name
,
const
ElementType
&
el_type
,
const
GhostType
&
ghost_type
)
const
{
return
mesh_data
.
getElementalDataArray
<
T
>
(
data_name
,
el_type
,
ghost_type
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
Array
<
T
>
&
Mesh
::
getData
(
const
std
::
string
&
data_name
,
const
ElementType
&
el_type
,
const
GhostType
&
ghost_type
)
{
return
mesh_data
.
getElementalDataArray
<
T
>
(
data_name
,
el_type
,
ghost_type
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
const
ElementTypeMapArray
<
T
>
&
Mesh
::
getData
(
const
std
::
string
&
data_name
)
const
{
return
mesh_data
.
getElementalData
<
T
>
(
data_name
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
ElementTypeMapArray
<
T
>
&
Mesh
::
getData
(
const
std
::
string
&
data_name
)
{
return
mesh_data
.
getElementalData
<
T
>
(
data_name
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
ElementTypeMapArray
<
T
>
&
Mesh
::
registerData
(
const
std
::
string
&
data_name
)
{
this
->
mesh_data
.
registerElementalData
<
T
>
(
data_name
);
return
this
->
getData
<
T
>
(
data_name
);
}
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
getNbElement
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
try
{
const
Array
<
UInt
>
&
conn
=
connectivities
(
type
,
ghost_type
);
AKANTU_DEBUG_OUT
();
return
conn
.
getSize
();
}
catch
(...)
{
AKANTU_DEBUG_OUT
();
return
0
;
}
}
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
getNbElement
(
const
UInt
spatial_dimension
,
const
GhostType
&
ghost_type
,
const
ElementKind
&
kind
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_element
=
0
;
type_iterator
it
=
firstType
(
spatial_dimension
,
ghost_type
,
kind
);
type_iterator
last
=
lastType
(
spatial_dimension
,
ghost_type
,
kind
);
for
(;
it
!=
last
;
++
it
)
nb_element
+=
getNbElement
(
*
it
,
ghost_type
);
AKANTU_DEBUG_OUT
();
return
nb_element
;
}
/* -------------------------------------------------------------------------- */
inline
void
Mesh
::
getBarycenter
(
UInt
element
,
const
ElementType
&
type
,
Real
*
barycenter
,
GhostType
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
UInt
*
conn_val
=
getConnectivity
(
type
,
ghost_type
).
storage
();
UInt
nb_nodes_per_element
=
getNbNodesPerElement
(
type
);
Real
local_coord
[
spatial_dimension
*
nb_nodes_per_element
];
UInt
offset
=
element
*
nb_nodes_per_element
;
for
(
UInt
n
=
0
;
n
<
nb_nodes_per_element
;
++
n
)
{
memcpy
(
local_coord
+
n
*
spatial_dimension
,
nodes
->
storage
()
+
conn_val
[
offset
+
n
]
*
spatial_dimension
,
spatial_dimension
*
sizeof
(
Real
));
}
Math
::
barycenter
(
local_coord
,
nb_nodes_per_element
,
spatial_dimension
,
barycenter
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
inline
void
Mesh
::
getBarycenter
(
const
Element
&
element
,
Vector
<
Real
>
&
barycenter
)
const
{
getBarycenter
(
element
.
element
,
element
.
type
,
barycenter
.
storage
(),
element
.
ghost_type
);
}
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
getNbNodesPerElement
(
const
ElementType
&
type
)
{
UInt
nb_nodes_per_element
=
0
;
#define GET_NB_NODES_PER_ELEMENT(type) \
nb_nodes_per_element = ElementClass<type>::getNbNodesPerElement()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_NB_NODES_PER_ELEMENT
);
#undef GET_NB_NODES_PER_ELEMENT
return
nb_nodes_per_element
;
}
/* -------------------------------------------------------------------------- */
inline
ElementType
Mesh
::
getP1ElementType
(
const
ElementType
&
type
)
{
ElementType
p1_type
=
_not_defined
;
#define GET_P1_TYPE(type) \
p1_type = ElementClass<type>::getP1ElementType()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_P1_TYPE
);
#undef GET_P1_TYPE
return
p1_type
;
}
/* -------------------------------------------------------------------------- */
inline
ElementKind
Mesh
::
getKind
(
const
ElementType
&
type
)
{
ElementKind
kind
=
_ek_not_defined
;
#define GET_KIND(type) \
kind = ElementClass<type>::getKind()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_KIND
);
#undef GET_KIND
return
kind
;
}
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
getSpatialDimension
(
const
ElementType
&
type
)
{
UInt
spatial_dimension
=
0
;
#define GET_SPATIAL_DIMENSION(type) \
spatial_dimension = ElementClass<type>::getSpatialDimension()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_SPATIAL_DIMENSION
);
#undef GET_SPATIAL_DIMENSION
return
spatial_dimension
;
}
/* -------------------------------------------------------------------------- */
inline
ElementType
Mesh
::
getFacetType
(
const
ElementType
&
type
)
{
ElementType
surface_type
=
_not_defined
;
#define GET_FACET_TYPE(type) \
surface_type = ElementClass<type>::getFacetType()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_FACET_TYPE
);
#undef GET_FACET_TYPE
return
surface_type
;
}
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
getNbFacetsPerElement
(
const
ElementType
&
type
)
{
AKANTU_DEBUG_IN
();
UInt
n_facet
=
0
;
#define GET_NB_FACET(type) \
n_facet = ElementClass<type>::getNbFacetsPerElement()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_NB_FACET
);
#undef GET_NB_FACET
AKANTU_DEBUG_OUT
();
return
n_facet
;
}
/* -------------------------------------------------------------------------- */
inline
MatrixProxy
<
UInt
>
Mesh
::
getFacetLocalConnectivity
(
const
ElementType
&
type
)
{
AKANTU_DEBUG_IN
();
MatrixProxy
<
UInt
>
mat
;
#define GET_FACET_CON(type) \
mat = ElementClass<type>::getFacetLocalConnectivityPerElement()
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_FACET_CON
);
#undef GET_FACET_CON
AKANTU_DEBUG_OUT
();
return
mat
;
}
/* -------------------------------------------------------------------------- */
inline
Matrix
<
UInt
>
Mesh
::
getFacetConnectivity
(
UInt
element
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
Matrix
<
UInt
>
local_facets
(
getFacetLocalConnectivity
(
type
),
false
);
Matrix
<
UInt
>
facets
(
local_facets
.
rows
(),
local_facets
.
cols
());
const
Array
<
UInt
>
&
conn
=
connectivities
(
type
,
ghost_type
);
for
(
UInt
f
=
0
;
f
<
facets
.
rows
();
++
f
)
{
for
(
UInt
n
=
0
;
n
<
facets
.
cols
();
++
n
)
{
facets
(
f
,
n
)
=
conn
(
element
,
local_facets
(
f
,
n
));
}
}
AKANTU_DEBUG_OUT
();
return
facets
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
inline
void
Mesh
::
extractNodalValuesFromElement
(
const
Array
<
T
>
&
nodal_values
,
T
*
local_coord
,
UInt
*
connectivity
,
UInt
n_nodes
,
UInt
nb_degree_of_freedom
)
const
{
for
(
UInt
n
=
0
;
n
<
n_nodes
;
++
n
)
{
memcpy
(
local_coord
+
n
*
nb_degree_of_freedom
,
nodal_values
.
storage
()
+
connectivity
[
n
]
*
nb_degree_of_freedom
,
nb_degree_of_freedom
*
sizeof
(
T
));
}
}
/* -------------------------------------------------------------------------- */
inline
void
Mesh
::
addConnectivityType
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
){
getConnectivityPointer
(
type
,
ghost_type
);
}
/* -------------------------------------------------------------------------- */
inline
bool
Mesh
::
isPureGhostNode
(
UInt
n
)
const
{
return
nodes_type
.
getSize
()
?
(
nodes_type
(
n
)
==
-
3
)
:
false
;
}
/* -------------------------------------------------------------------------- */
inline
bool
Mesh
::
isLocalOrMasterNode
(
UInt
n
)
const
{
return
nodes_type
.
getSize
()
?
(
nodes_type
(
n
)
==
-
2
)
||
(
nodes_type
(
n
)
==
-
1
)
:
true
;
}
/* -------------------------------------------------------------------------- */
inline
bool
Mesh
::
isLocalNode
(
UInt
n
)
const
{
return
nodes_type
.
getSize
()
?
nodes_type
(
n
)
==
-
1
:
true
;
}
/* -------------------------------------------------------------------------- */
inline
bool
Mesh
::
isMasterNode
(
UInt
n
)
const
{
return
nodes_type
.
getSize
()
?
nodes_type
(
n
)
==
-
2
:
false
;
}
/* -------------------------------------------------------------------------- */
inline
bool
Mesh
::
isSlaveNode
(
UInt
n
)
const
{
return
nodes_type
.
getSize
()
?
nodes_type
(
n
)
>=
0
:
false
;
}
/* -------------------------------------------------------------------------- */
inline
Int
Mesh
::
getNodeType
(
UInt
local_id
)
const
{
return
nodes_type
.
getSize
()
?
nodes_type
(
local_id
)
:
-
1
;
}
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
getNodeGlobalId
(
UInt
local_id
)
const
{
return
nodes_global_ids
?
(
*
nodes_global_ids
)(
local_id
)
:
local_id
;
}
/* -------------------------------------------------------------------------- */
inline
UInt
Mesh
::
getNbGlobalNodes
()
const
{
return
nodes_global_ids
?
nb_global_nodes
:
nodes
->
getSize
();
}
/* -------------------------------------------------------------------------- */
__END_AKANTU__
#endif
/* __AKANTU_MESH_INLINE_IMPL_CC__ */
Event Timeline
Log In to Comment