Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94019173
phase_field_model.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Dec 3, 07:15
Size
16 KB
Mime Type
text/x-c
Expires
Thu, Dec 5, 07:15 (2 d)
Engine
blob
Format
Raw Data
Handle
22665559
Attached To
rAKA akantu
phase_field_model.cc
View Options
/**
* Copyright (©) 2018-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "phase_field_model.hh"
#include "dumpable_inline_impl.hh"
#include "element_synchronizer.hh"
#include "fe_engine_template.hh"
#include "group_manager_inline_impl.hh"
#include "integrator_gauss.hh"
#include "shape_lagrange.hh"
/* -------------------------------------------------------------------------- */
#include "dumper_element_partition.hh"
#include "dumper_elemental_field.hh"
#include "dumper_internal_material_field.hh"
#include "dumper_iohelper_paraview.hh"
#include <utility>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
PhaseFieldModel
::
PhaseFieldModel
(
Mesh
&
mesh
,
Int
dim
,
const
ID
&
id
,
std
::
shared_ptr
<
DOFManager
>
dof_manager
,
ModelType
model_type
)
:
Parent
(
mesh
,
model_type
,
dim
,
id
)
{
AKANTU_DEBUG_IN
();
this
->
initDOFManager
(
std
::
move
(
dof_manager
));
this
->
registerFEEngineObject
<
FEEngineType
>
(
"PhaseFieldFEEngine"
,
mesh
,
Model
::
spatial_dimension
);
this
->
mesh
.
registerDumper
<
DumperParaview
>
(
"phase_field"
,
id
,
true
);
this
->
mesh
.
addDumpMesh
(
mesh
,
Model
::
spatial_dimension
,
_not_ghost
,
_ek_regular
);
if
(
this
->
mesh
.
isDistributed
())
{
auto
&
synchronizer
=
this
->
mesh
.
getElementSynchronizer
();
this
->
registerSynchronizer
(
synchronizer
,
SynchronizationTag
::
_pfm_damage
);
this
->
registerSynchronizer
(
synchronizer
,
SynchronizationTag
::
_for_dump
);
}
this
->
parser_type
=
ParserType
::
_phasefield
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
MatrixType
PhaseFieldModel
::
getMatrixType
(
const
ID
&
matrix_id
)
const
{
if
(
matrix_id
==
"K"
)
{
return
_symmetric
;
}
return
_mt_not_defined
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
initFullImpl
(
const
ModelOptions
&
options
)
{
Parent
::
initFullImpl
(
options
);
this
->
initBC
(
*
this
,
*
damage
,
*
external_force
);
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
)
{
this
->
assembleStiffnessMatrix
();
}
else
{
AKANTU_ERROR
(
"Unknown Matrix ID for PhaseFieldModel : "
<<
matrix_id
);
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
predictor
()
{
// AKANTU_TO_IMPLEMENT();
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
corrector
()
{
// AKANTU_TO_IMPLEMENT();
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
initSolver
(
TimeStepSolverType
time_step_solver_type
,
NonLinearSolverType
/*unused*/
)
{
DOFManager
&
dof_manager
=
this
->
getDOFManager
();
this
->
allocNodalField
(
this
->
damage
,
1
,
"damage"
);
this
->
allocNodalField
(
this
->
external_force
,
1
,
"external_force"
);
this
->
allocNodalField
(
this
->
internal_force
,
1
,
"internal_force"
);
this
->
allocNodalField
(
this
->
blocked_dofs
,
1
,
"blocked_dofs"
);
this
->
allocNodalField
(
this
->
previous_damage
,
1
,
"previous_damage"
);
if
(
!
dof_manager
.
hasDOFs
(
"damage"
))
{
dof_manager
.
registerDOFs
(
"damage"
,
*
this
->
damage
,
_dst_nodal
);
dof_manager
.
registerBlockedDOFs
(
"damage"
,
*
this
->
blocked_dofs
);
dof_manager
.
registerDOFsPrevious
(
"damage"
,
*
this
->
previous_damage
);
}
if
(
time_step_solver_type
==
TimeStepSolverType
::
_dynamic
)
{
AKANTU_TO_IMPLEMENT
();
}
}
/* -------------------------------------------------------------------------- */
FEEngine
&
PhaseFieldModel
::
getFEEngineBoundary
(
const
ID
&
name
)
{
return
dynamic_cast
<
FEEngine
&>
(
getFEEngineClassBoundary
<
FEEngineType
>
(
name
));
}
/* -------------------------------------------------------------------------- */
TimeStepSolverType
PhaseFieldModel
::
getDefaultSolverType
()
const
{
return
TimeStepSolverType
::
_static
;
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
ID
,
TimeStepSolverType
>
PhaseFieldModel
::
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
{
switch
(
method
)
{
case
_explicit_lumped_mass:
{
return
std
::
make_tuple
(
"explicit_lumped"
,
TimeStepSolverType
::
_dynamic_lumped
);
}
case
_explicit_consistent_mass:
{
return
std
::
make_tuple
(
"explicit"
,
TimeStepSolverType
::
_dynamic
);
}
case
_static:
{
return
std
::
make_tuple
(
"static"
,
TimeStepSolverType
::
_static
);
}
case
_implicit_dynamic:
{
return
std
::
make_tuple
(
"implicit"
,
TimeStepSolverType
::
_dynamic
);
}
default
:
return
std
::
make_tuple
(
"unknown"
,
TimeStepSolverType
::
_not_defined
);
}
}
/* -------------------------------------------------------------------------- */
ModelSolverOptions
PhaseFieldModel
::
getDefaultSolverOptions
(
const
TimeStepSolverType
&
type
)
const
{
ModelSolverOptions
options
;
switch
(
type
)
{
case
TimeStepSolverType
::
_dynamic_lumped:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_lumped
;
options
.
integration_scheme_type
[
"damage"
]
=
IntegrationSchemeType
::
_central_difference
;
options
.
solution_type
[
"damage"
]
=
IntegrationScheme
::
_acceleration
;
break
;
}
case
TimeStepSolverType
::
_static:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_newton_raphson
;
options
.
integration_scheme_type
[
"damage"
]
=
IntegrationSchemeType
::
_pseudo_time
;
options
.
solution_type
[
"damage"
]
=
IntegrationScheme
::
_not_defined
;
break
;
}
case
TimeStepSolverType
::
_dynamic:
{
options
.
non_linear_solver_type
=
NonLinearSolverType
::
_newton_raphson
;
options
.
integration_scheme_type
[
"damage"
]
=
IntegrationSchemeType
::
_backward_euler
;
options
.
solution_type
[
"damage"
]
=
IntegrationScheme
::
_damage
;
break
;
}
default
:
AKANTU_EXCEPTION
(
type
<<
" is not a valid time step solver type"
);
}
return
options
;
}
/* -------------------------------------------------------------------------- */
Real
PhaseFieldModel
::
getEnergy
(
const
ID
&
energy_id
)
{
AKANTU_DEBUG_IN
();
Real
energy
=
0.
;
for_each_constitutive_law
([
&
energy
,
&
energy_id
](
auto
&&
phase_field
)
{
energy
+=
phase_field
.
getEnergy
(
energy_id
);
});
/// reduction sum over all processors
mesh
.
getCommunicator
().
allReduce
(
energy
,
SynchronizerOperation
::
_sum
);
AKANTU_DEBUG_OUT
();
return
energy
;
}
/* -------------------------------------------------------------------------- */
Real
PhaseFieldModel
::
getEnergy
(
const
ID
&
energy_id
,
const
Element
&
element
)
{
auto
pf_element
=
element
;
auto
phase_index
=
this
->
getConstitutiveLawByElement
()(
element
);
pf_element
.
element
=
this
->
getConstitutiveLawLocalNumbering
()(
element
);
Real
energy
=
this
->
getConstitutiveLaw
(
phase_index
).
getEnergy
(
energy_id
,
pf_element
);
return
energy
;
}
/* -------------------------------------------------------------------------- */
Real
PhaseFieldModel
::
getEnergy
(
const
ID
&
energy_id
,
const
ID
&
group_id
)
{
auto
&&
group
=
mesh
.
getElementGroup
(
group_id
);
auto
energy
=
0.
;
for
(
auto
&&
type
:
group
.
elementTypes
())
{
for
(
auto
el
:
group
.
getElementsIterable
(
type
))
{
energy
+=
this
->
getEnergy
(
energy_id
,
el
);
}
}
/// reduction sum over all processors
mesh
.
getCommunicator
().
allReduce
(
energy
,
SynchronizerOperation
::
_sum
);
return
energy
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
beforeSolveStep
()
{
for_each_constitutive_law
(
[](
auto
&&
phasefield
)
{
phasefield
.
beforeSolveStep
();
});
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
afterSolveStep
(
bool
converged
)
{
if
(
not
converged
)
{
return
;
}
for
(
auto
&&
values
:
zip
(
*
damage
,
*
previous_damage
))
{
auto
&
dam
=
std
::
get
<
0
>
(
values
);
auto
&
prev_dam
=
std
::
get
<
1
>
(
values
);
prev_dam
=
dam
;
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleStiffnessMatrix
()
{
AKANTU_DEBUG_INFO
(
"Assemble the new stiffness matrix"
);
if
(
!
this
->
getDOFManager
().
hasMatrix
(
"K"
))
{
this
->
getDOFManager
().
getNewMatrix
(
"K"
,
getMatrixType
(
"K"
));
}
this
->
getDOFManager
().
zeroMatrix
(
"K"
);
for_each_constitutive_law
([](
auto
&&
phasefield
)
{
phasefield
.
assembleStiffnessMatrix
(
_not_ghost
);
});
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleResidual
()
{
this
->
assembleInternalForces
();
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
*
this
->
external_force
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"damage"
,
*
this
->
internal_force
,
1
);
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleInternalForces
()
{
AKANTU_DEBUG_INFO
(
"Assemble the internal forces"
);
this
->
internal_force
->
zero
();
this
->
synchronize
(
SynchronizationTag
::
_pfm_damage
);
for_each_constitutive_law
([](
auto
&&
phasefield
)
{
phasefield
.
computeAllDrivingForces
(
_not_ghost
);
});
// assemble the forces due to local driving forces
AKANTU_DEBUG_INFO
(
"Assemble residual for local elements"
);
for_each_constitutive_law
([](
auto
&&
phasefield
)
{
phasefield
.
assembleInternalForces
(
_not_ghost
);
});
// assemble the forces due to local driving forces
AKANTU_DEBUG_INFO
(
"Assemble residual for ghost elements"
);
for_each_constitutive_law
(
[](
auto
&&
phasefield
)
{
phasefield
.
assembleInternalForces
(
_ghost
);
});
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
assembleLumpedMatrix
(
const
ID
&
/*matrix_id*/
)
{}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
setTimeStep
(
Real
time_step
,
const
ID
&
solver_id
)
{
Model
::
setTimeStep
(
time_step
,
solver_id
);
this
->
mesh
.
getDumper
(
"phase_field"
).
setTimeStep
(
time_step
);
}
/* -------------------------------------------------------------------------- */
Int
PhaseFieldModel
::
getNbData
(
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
{
Int
size
=
Parent
::
getNbData
(
elements
,
tag
);
Int
nb_nodes_per_element
=
0
;
for
(
const
Element
&
el
:
elements
)
{
nb_nodes_per_element
+=
Mesh
::
getNbNodesPerElement
(
el
.
type
);
}
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
// damage
size
+=
nb_nodes_per_element
*
sizeof
(
Real
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
size
+=
nb_nodes_per_element
*
sizeof
(
Real
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
return
size
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
{
Parent
::
packData
(
buffer
,
elements
,
tag
);
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
packNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
packNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
{
Parent
::
unpackData
(
buffer
,
elements
,
tag
);
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
unpackNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
unpackNodalDataHelper
(
*
damage
,
buffer
,
elements
,
mesh
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Int
PhaseFieldModel
::
getNbData
(
const
Array
<
Idx
>
&
indexes
,
const
SynchronizationTag
&
tag
)
const
{
Int
size
=
0
;
Int
nb_nodes
=
indexes
.
size
();
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
size
+=
nb_nodes
*
sizeof
(
Real
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
size
+=
nb_nodes
*
sizeof
(
Real
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
return
size
;
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Idx
>
&
indexes
,
const
SynchronizationTag
&
tag
)
const
{
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
packDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
packDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
}
/* -------------------------------------------------------------------------- */
void
PhaseFieldModel
::
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Idx
>
&
indexes
,
const
SynchronizationTag
&
tag
)
{
switch
(
tag
)
{
case
SynchronizationTag
::
_for_dump:
{
unpackDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
case
SynchronizationTag
::
_pfm_damage:
{
unpackDOFDataHelper
(
*
damage
,
buffer
,
indexes
);
break
;
}
default
:
{
AKANTU_ERROR
(
"Unknown ghost synchronization tag : "
<<
tag
);
}
}
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
PhaseFieldModel
::
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
/*unused*/
)
{
std
::
map
<
std
::
string
,
Array
<
bool
>
*>
uint_nodal_fields
;
uint_nodal_fields
[
"blocked_dofs"
]
=
blocked_dofs
.
get
();
return
mesh
.
createNodalField
(
uint_nodal_fields
[
field_name
],
group_name
);
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
PhaseFieldModel
::
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
/*unused*/
)
{
std
::
map
<
std
::
string
,
Array
<
Real
>
*>
real_nodal_fields
;
real_nodal_fields
[
"damage"
]
=
damage
.
get
();
real_nodal_fields
[
"external_force"
]
=
external_force
.
get
();
real_nodal_fields
[
"internal_force"
]
=
internal_force
.
get
();
return
mesh
.
createNodalField
(
real_nodal_fields
[
field_name
],
group_name
);
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
/* -------------------------------------------------------------------------- */
std
::
shared_ptr
<
dumpers
::
Field
>
PhaseFieldModel
::
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
/*unused*/
,
Int
/*unused*/
,
ElementKind
element_kind
)
{
if
(
field_name
==
"partitions"
)
{
return
mesh
.
createElementalField
<
Int
,
dumpers
::
ElementPartitionField
>
(
mesh
.
getConnectivities
(),
group_name
,
this
->
spatial_dimension
,
element_kind
);
}
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
return
field
;
}
}
// namespace akantu
Event Timeline
Log In to Comment