Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94101595
aka_point.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Dec 3, 22:19
Size
6 KB
Mime Type
text/x-c++
Expires
Thu, Dec 5, 22:19 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22670245
Attached To
rAKA akantu
aka_point.hh
View Options
/**
* @file aka_point.hh
*
* @author Alejandro M. Aragón <alejandro.aragon@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
*
* @date creation: Fri Jan 04 2013
* @date last modification: Sun Oct 19 2014
*
* @brief Geometry class representing points
*
* @section LICENSE
*
* Copyright (©) 2014, 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_AKA_POINT_HH__
#define __AKANTU_AKA_POINT_HH__
#include "aka_common.hh"
#include <cmath>
#include <cassert>
__BEGIN_AKANTU__
const
Real
inf
=
std
::
numeric_limits
<
Real
>::
infinity
();
//! Point class template
/*! This class represents the abstraction of a point in d-Euclidian
* space.
* \tparam d - Space dimension
* \tparam T - Type for storing coordinate values
*/
template
<
int
d
,
typename
T
=
Real
>
class
Point
{
public
:
typedef
T
value_type
;
//! Return the dimension of the point
constexpr
static
int
dim
()
{
return
d
;
}
//! Default constructor creates a point on the origin
Point
()
{
for
(
UInt
i
=
0
;
i
<
d
;
++
i
)
coord_
[
i
]
=
value_type
();
}
//! Parameter constructor using a const pointer
/*! This constructor can be used to create a point out of a pointer.
* This constructor assumes the memory that contains the coordinates
* is valid.
*/
explicit
Point
(
value_type
const
*
coordinates
)
{
for
(
UInt
i
=
0
;
i
<
d
;
++
i
)
coord_
[
i
]
=
coordinates
[
i
];
}
//! Parameter constructor using a pointer
/*! This constructor can be used to create a point out of a pointer.
* This constructor assumes the memory that contains the coordinates
* is valid.
*/
explicit
Point
(
value_type
*
coordinates
)
{
for
(
UInt
i
=
0
;
i
<
d
;
++
i
)
coord_
[
i
]
=
coordinates
[
i
];
}
//! Parameter constructor
/*! This constructor takes exactly d number of parameters so that the
* point can be initialized to the given parameters.
*/
template
<
typename
...
Args
>
explicit
Point
(
const
Args
&
...
args
)
{
static_assert
(
sizeof
...(
Args
)
<=
d
,
"*** ERROR *** Number of arguments exceeded point dension"
);
std
::
fill_n
(
coord_
,
d
,
value_type
());
value_type
coord
[]
=
{
args
...
};
if
(
sizeof
...(
Args
)
!=
0
)
for
(
size_t
i
=
0
;
i
<
d
;
++
i
)
coord_
[
i
]
=
i
<
sizeof
...(
Args
)
?
coord
[
i
]
:
coord
[
sizeof
...(
Args
)
-
1
];
}
//! Less-than operator
/*! This operator enables the use of Point objects in sets and maps
*/
bool
operator
<
(
const
Point
&
p
)
const
{
for
(
int
i
=
0
;
i
<
d
;
++
i
)
if
(
coord_
[
i
]
<
p
[
i
])
return
true
;
return
false
;
}
//! Equal-to operator
bool
operator
==
(
const
Point
&
p
)
const
{
for
(
int
i
=
0
;
i
<
d
;
++
i
)
if
(
coord_
[
i
]
!=
p
[
i
])
return
false
;
return
true
;
}
//! Standard output stream operator
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Point
&
p
)
{
os
<<
"{"
<<
p
.
coord_
[
0
];
for
(
int
i
=
1
;
i
<
d
;
++
i
)
os
<<
","
<<
p
.
coord_
[
i
];
os
<<
"}"
;
return
os
;
}
public
:
//! Get copy of coordinate
value_type
operator
[]
(
UInt
index
)
const
{
assert
(
index
<
d
);
return
coord_
[
index
];
}
//! Get write access to coordinate
value_type
&
operator
[]
(
UInt
index
)
{
assert
(
index
<
d
);
return
coord_
[
index
];
}
//! Addition compound assignment operator
Point
&
operator
+=
(
const
Point
&
p
)
{
for
(
int
i
=
0
;
i
<
d
;
++
i
)
coord_
[
i
]
+=
p
.
coord_
[
i
];
return
*
this
;
}
//! Subtraction compound assignment operator
Point
&
operator
-=
(
const
Point
&
p
)
{
for
(
int
i
=
0
;
i
<
d
;
++
i
)
coord_
[
i
]
-=
p
.
coord_
[
i
];
return
*
this
;
}
//! Scalar multiplication compound assignment operator
template
<
typename
S
>
Point
&
operator
*=
(
S
s
)
{
for
(
int
i
=
0
;
i
<
d
;
++
i
)
coord_
[
i
]
*=
s
;
return
*
this
;
}
//! Scale point so that its magnitude is one
Point
&
normalize
()
{
return
(
*
this
)
*=
(
1
/
std
::
sqrt
(
sq_norm
()));
}
//! Get the square of the magnutud
value_type
sq_norm
()
{
value_type
r
=
value_type
();
for
(
int
i
=
0
;
i
<
d
;
++
i
)
r
+=
std
::
pow
(
coord_
[
i
],
2
);
return
r
;
}
private
:
value_type
coord_
[
d
];
//! Point coordinates
};
//! Addition between two points
template
<
int
d
,
typename
T
>
Point
<
d
,
T
>
operator
+
(
const
Point
<
d
,
T
>&
p
,
const
Point
<
d
,
T
>&
q
)
{
Point
<
d
,
T
>
r
(
p
);
return
r
+=
q
;
}
//! Subtraction between two points
template
<
int
d
,
typename
T
>
Point
<
d
,
T
>
operator
-
(
const
Point
<
d
,
T
>&
p
,
const
Point
<
d
,
T
>&
q
)
{
Point
<
d
,
T
>
r
(
p
);
return
r
-=
q
;
}
//! Overload operator* for the scalar product
template
<
int
d
,
typename
T
>
typename
Point
<
d
,
T
>::
value_type
operator
*
(
const
Point
<
d
,
T
>&
p
,
const
Point
<
d
,
T
>&
q
)
{
typename
Point
<
d
,
T
>::
value_type
r
=
0
;
for
(
int
i
=
0
;
i
<
d
;
++
i
)
r
+=
p
[
i
]
*
q
[
i
];
return
r
;
}
//! Multiply a point by a scalar
template
<
int
d
,
typename
T
>
Point
<
d
,
T
>
operator
*
(
const
Point
<
d
,
T
>&
p
,
typename
Point
<
d
,
T
>::
value_type
s
)
{
Point
<
d
,
T
>
r
(
p
);
return
r
*=
s
;
}
//! Multiply a point by a scalar
template
<
int
d
,
typename
T
>
Point
<
d
,
T
>
operator
*
(
typename
Point
<
d
,
T
>::
value_type
s
,
const
Point
<
d
,
T
>&
p
)
{
Point
<
d
,
T
>
r
(
p
);
return
r
*=
s
;
}
//! Cross product
template
<
typename
T
>
Point
<
3
,
T
>
cross
(
const
Point
<
3
,
T
>&
o
,
const
Point
<
3
,
T
>&
p
)
{
Point
<
3
,
T
>
r
;
for
(
int
i
=
0
;
i
<
3
;
++
i
)
r
[
i
]
=
o
[(
i
+
1
)
%
3
]
*
p
[(
i
+
2
)
%
3
]
-
o
[(
i
+
2
)
%
3
]
*
p
[(
i
+
1
)
%
3
];
return
r
;
}
//! Bounding volume class template
/*! This class is used as a building block for constructing
* hierarchies of boundign volumes used in the contact detection
* framework.
*/
template
<
int
d
>
struct
Bounding_volume
{
typedef
Point
<
d
>
point_type
;
typedef
typename
point_type
::
value_type
value_type
;
virtual
value_type
measure
()
const
=
0
;
virtual
std
::
ostream
&
print
(
std
::
ostream
&
os
)
const
=
0
;
Real
last_time_
;
point_type
velocity_
;
point_type
acceleration_
;
//! Standard output stream operator
friend
std
::
ostream
&
operator
<<
(
std
::
ostream
&
os
,
const
Bounding_volume
&
gv
)
{
return
gv
.
print
(
os
);
}
};
__END_AKANTU__
#endif
/* __AKANTU_AKA_POINT_HH__ */
Event Timeline
Log In to Comment