Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93716829
ntn_contact.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 30, 22:49
Size
17 KB
Mime Type
text/x-c
Expires
Mon, Dec 2, 22:49 (2 d)
Engine
blob
Format
Raw Data
Handle
22690597
Attached To
rAKA akantu
ntn_contact.cc
View Options
/**
* @file ntn_contact.cc
*
* @author David Simon Kammer <david.kammer@epfl.ch>
*
*
* @brief implementation of ntn_contact
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
*/
/* -------------------------------------------------------------------------- */
// simtools
#include "ntn_contact.hh"
#include "dumper_text.hh"
#include "dumper_nodal_field.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
NTNContact
::
NTNContact
(
SolidMechanicsModel
&
model
,
const
ContactID
&
id
,
const
MemoryID
&
memory_id
)
:
NTNBaseContact
(
model
,
id
,
memory_id
),
masters
(
0
,
1
,
0
,
id
+
":masters"
,
std
::
numeric_limits
<
UInt
>::
quiet_NaN
(),
"masters"
),
lumped_boundary_masters
(
0
,
1
,
0
,
id
+
":lumped_boundary_masters"
,
std
::
numeric_limits
<
Real
>::
quiet_NaN
(),
"lumped_boundary_masters"
),
master_elements
(
"master_elements"
,
id
,
memory_id
)
{
AKANTU_DEBUG_IN
();
const
Mesh
&
mesh
=
this
->
model
.
getMesh
();
UInt
spatial_dimension
=
this
->
model
.
getSpatialDimension
();
mesh
.
initElementTypeMapArray
(
this
->
master_elements
,
1
,
spatial_dimension
-
1
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
pairInterfaceNodes
(
const
ElementGroup
&
slave_boundary
,
const
ElementGroup
&
master_boundary
,
UInt
surface_normal_dir
,
const
Mesh
&
mesh
,
Array
<
UInt
>
&
pairs
)
{
AKANTU_DEBUG_IN
();
pairs
.
resize
(
0
);
AKANTU_DEBUG_ASSERT
(
pairs
.
getNbComponent
()
==
2
,
"Array of node pairs should have nb_component = 2,"
<<
" but has nb_component = "
<<
pairs
.
getNbComponent
());
UInt
dim
=
mesh
.
getSpatialDimension
();
AKANTU_DEBUG_ASSERT
(
surface_normal_dir
<
dim
,
"Mesh is of "
<<
dim
<<
" dimensions"
<<
" and cannot have direction "
<<
surface_normal_dir
<<
" for surface normal"
);
// offset for projection computation
UInt
offset
[
dim
-
1
];
for
(
UInt
i
=
0
,
j
=
0
;
i
<
dim
;
++
i
)
{
if
(
surface_normal_dir
!=
i
)
{
offset
[
j
]
=
i
;
++
j
;
}
}
// find projected node coordinates
const
Array
<
Real
>
&
coordinates
=
mesh
.
getNodes
();
// find slave nodes
Array
<
Real
>
proj_slave_coord
(
slave_boundary
.
getNbNodes
(),
dim
-
1
,
0.
);
Array
<
UInt
>
slave_nodes
(
slave_boundary
.
getNbNodes
());
UInt
n
(
0
);
for
(
ElementGroup
::
const_node_iterator
nodes_it
(
slave_boundary
.
node_begin
());
nodes_it
!=
slave_boundary
.
node_end
();
++
nodes_it
)
{
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
proj_slave_coord
(
n
,
d
)
=
coordinates
(
*
nodes_it
,
offset
[
d
]);
slave_nodes
(
n
)
=*
nodes_it
;
}
++
n
;
}
// find master nodes
Array
<
Real
>
proj_master_coord
(
master_boundary
.
getNbNodes
(),
dim
-
1
,
0.
);
Array
<
UInt
>
master_nodes
(
master_boundary
.
getNbNodes
());
n
=
0
;
for
(
ElementGroup
::
const_node_iterator
nodes_it
(
master_boundary
.
node_begin
());
nodes_it
!=
master_boundary
.
node_end
();
++
nodes_it
)
{
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
proj_master_coord
(
n
,
d
)
=
coordinates
(
*
nodes_it
,
offset
[
d
]);
master_nodes
(
n
)
=*
nodes_it
;
}
++
n
;
}
// find minimum distance between slave nodes to define tolerance
Real
min_dist
=
std
::
numeric_limits
<
Real
>::
max
();
for
(
UInt
i
=
0
;
i
<
proj_slave_coord
.
getSize
();
++
i
)
{
for
(
UInt
j
=
i
+
1
;
j
<
proj_slave_coord
.
getSize
();
++
j
)
{
Real
dist
=
0.
;
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
dist
+=
(
proj_slave_coord
(
i
,
d
)
-
proj_slave_coord
(
j
,
d
))
*
(
proj_slave_coord
(
i
,
d
)
-
proj_slave_coord
(
j
,
d
));
}
if
(
dist
<
min_dist
)
{
min_dist
=
dist
;
}
}
}
min_dist
=
std
::
sqrt
(
min_dist
);
Real
local_tol
=
0.1
*
min_dist
;
// find master slave node pairs
for
(
UInt
i
=
0
;
i
<
proj_slave_coord
.
getSize
();
++
i
)
{
for
(
UInt
j
=
0
;
j
<
proj_master_coord
.
getSize
();
++
j
)
{
Real
dist
=
0.
;
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
dist
+=
(
proj_slave_coord
(
i
,
d
)
-
proj_master_coord
(
j
,
d
))
*
(
proj_slave_coord
(
i
,
d
)
-
proj_master_coord
(
j
,
d
));
}
dist
=
std
::
sqrt
(
dist
);
if
(
dist
<
local_tol
)
{
// it is a pair
UInt
pair
[
2
];
pair
[
0
]
=
slave_nodes
(
i
);
pair
[
1
]
=
master_nodes
(
j
);
pairs
.
push_back
(
pair
);
continue
;
// found master do not need to search further for this slave
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
addSurfacePair
(
const
Surface
&
slave
,
const
Surface
&
master
,
UInt
surface_normal_dir
)
{
AKANTU_DEBUG_IN
();
const
Mesh
&
mesh
=
this
->
model
.
getMesh
();
const
ElementGroup
&
slave_boundary
=
mesh
.
getElementGroup
(
slave
);
const
ElementGroup
&
master_boundary
=
mesh
.
getElementGroup
(
master
);
this
->
contact_surfaces
.
insert
(
&
slave_boundary
);
this
->
contact_surfaces
.
insert
(
&
master_boundary
);
Array
<
UInt
>
pairs
(
0
,
2
);
NTNContact
::
pairInterfaceNodes
(
slave_boundary
,
master_boundary
,
surface_normal_dir
,
this
->
model
.
getMesh
(),
pairs
);
// eliminate pairs which contain a pbc slave node
Array
<
UInt
>
pairs_no_PBC_slaves
(
0
,
2
);
Array
<
UInt
>::
const_vector_iterator
it
=
pairs
.
begin
(
2
);
Array
<
UInt
>::
const_vector_iterator
end
=
pairs
.
end
(
2
);
for
(;
it
!=
end
;
++
it
)
{
const
Vector
<
UInt
>
&
pair
=
*
it
;
if
(
!
this
->
model
.
isPBCSlaveNode
(
pair
(
0
))
&&
!
this
->
model
.
isPBCSlaveNode
(
pair
(
1
)))
{
pairs_no_PBC_slaves
.
push_back
(
pair
);
}
}
this
->
addNodePairs
(
pairs_no_PBC_slaves
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
addNodePairs
(
const
Array
<
UInt
>
&
pairs
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
(
pairs
.
getNbComponent
()
==
2
,
"Array of node pairs should have nb_component = 2,"
<<
" but has nb_component = "
<<
pairs
.
getNbComponent
());
UInt
nb_pairs
=
pairs
.
getSize
();
for
(
UInt
n
=
0
;
n
<
nb_pairs
;
++
n
)
{
this
->
addSplitNode
(
pairs
(
n
,
0
),
pairs
(
n
,
1
));
}
// synchronize with depending nodes
findBoundaryElements
(
this
->
slaves
.
getArray
(),
this
->
slave_elements
);
findBoundaryElements
(
this
->
masters
.
getArray
(),
this
->
master_elements
);
updateInternalData
();
syncArrays
(
_added
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
getNodePairs
(
Array
<
UInt
>
&
pairs
)
const
{
AKANTU_DEBUG_IN
();
pairs
.
resize
(
0
);
AKANTU_DEBUG_ASSERT
(
pairs
.
getNbComponent
()
==
2
,
"Array of node pairs should have nb_component = 2,"
<<
" but has nb_component = "
<<
pairs
.
getNbComponent
());
UInt
nb_pairs
=
this
->
getNbContactNodes
();
for
(
UInt
n
=
0
;
n
<
nb_pairs
;
++
n
)
{
UInt
pair
[
2
];
pair
[
0
]
=
this
->
slaves
(
n
);
pair
[
1
]
=
this
->
masters
(
n
);
pairs
.
push_back
(
pair
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
addSplitNode
(
UInt
slave
,
UInt
master
)
{
AKANTU_DEBUG_IN
();
NTNBaseContact
::
addSplitNode
(
slave
);
this
->
masters
.
push_back
(
master
);
this
->
lumped_boundary_masters
.
push_back
(
std
::
numeric_limits
<
Real
>::
quiet_NaN
());
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/*
This function only works for surface elements with one quad point. For
surface elements with more quad points, it computes still, but the result
might not be what you are looking for.
*/
void
NTNContact
::
updateNormals
()
{
AKANTU_DEBUG_IN
();
// set normals to zero
this
->
normals
.
clear
();
// contact information
UInt
dim
=
this
->
model
.
getSpatialDimension
();
UInt
nb_contact_nodes
=
this
->
getNbContactNodes
();
this
->
synch_registry
->
synchronize
(
_gst_cf_nodal
);
// synchronize current pos
const
Array
<
Real
>
&
cur_pos
=
this
->
model
.
getCurrentPosition
();
FEEngine
&
boundary_fem
=
this
->
model
.
getFEEngineBoundary
();
const
Mesh
&
mesh
=
this
->
model
.
getMesh
();
for
(
ghost_type_t
::
iterator
gt
=
ghost_type_t
::
begin
();
gt
!=
ghost_type_t
::
end
();
++
gt
)
{
Mesh
::
type_iterator
it
=
mesh
.
firstType
(
dim
-
1
,
*
gt
);
Mesh
::
type_iterator
last
=
mesh
.
lastType
(
dim
-
1
,
*
gt
);
for
(;
it
!=
last
;
++
it
)
{
// compute the normals
Array
<
Real
>
quad_normals
(
0
,
dim
);
boundary_fem
.
computeNormalsOnIntegrationPoints
(
cur_pos
,
quad_normals
,
*
it
,
*
gt
);
UInt
nb_quad_points
=
boundary_fem
.
getNbIntegrationPoints
(
*
it
,
*
gt
);
// new version: compute normals only based on master elements (and not all boundary elements)
// -------------------------------------------------------------------------------------
UInt
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
*
it
);
const
Array
<
UInt
>
&
connectivity
=
mesh
.
getConnectivity
(
*
it
,
*
gt
);
Array
<
UInt
>::
const_iterator
<
UInt
>
elem_it
=
(
this
->
master_elements
)(
*
it
,
*
gt
).
begin
();
Array
<
UInt
>::
const_iterator
<
UInt
>
elem_it_end
=
(
this
->
master_elements
)(
*
it
,
*
gt
).
end
();
// loop over contact nodes
for
(;
elem_it
!=
elem_it_end
;
++
elem_it
)
{
for
(
UInt
q
=
0
;
q
<
nb_nodes_per_element
;
++
q
)
{
UInt
node
=
connectivity
(
*
elem_it
,
q
);
UInt
node_index
=
this
->
masters
.
find
(
node
);
AKANTU_DEBUG_ASSERT
(
node_index
!=
UInt
(
-
1
),
"Could not find node "
<<
node
<<
" in the array!"
);
for
(
UInt
q
=
0
;
q
<
nb_quad_points
;
++
q
)
{
// add quad normal to master normal
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
this
->
normals
(
node_index
,
d
)
+=
quad_normals
((
*
elem_it
)
*
nb_quad_points
+
q
,
d
);
}
}
}
}
// -------------------------------------------------------------------------------------
/*
// get elements connected to each node
CSR<UInt> node_to_element;
MeshUtils::buildNode2ElementsElementTypeMap(mesh, node_to_element, *it, *gt);
// add up normals to all master nodes
for (UInt n=0; n<nb_contact_nodes; ++n) {
UInt master = this->masters(n);
CSR<UInt>::iterator elem = node_to_element.begin(master);
// loop over all elements connected to this master node
for (; elem != node_to_element.end(master); ++elem) {
UInt e = *elem;
// loop over all quad points of this element
for (UInt q=0; q<nb_quad_points; ++q) {
// add quad normal to master normal
for (UInt d=0; d<dim; ++d) {
this->normals(n,d) += quad_normals(e*nb_quad_points + q, d);
}
}
}
}
*/
}
}
Real
*
master_normals
=
this
->
normals
.
storage
();
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
if
(
dim
==
2
)
Math
::
normalize2
(
&
(
master_normals
[
n
*
dim
]));
else
if
(
dim
==
3
)
Math
::
normalize3
(
&
(
master_normals
[
n
*
dim
]));
}
// // normalize normals
// Array<Real>::iterator<Real> nit = this->normals.begin();
// Array<Real>::iterator<Real> nend = this->normals.end();
// for (; nit != nend; ++nit) {
// nit->normalize();
// }
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
dumpRestart
(
const
std
::
string
&
file_name
)
const
{
AKANTU_DEBUG_IN
();
NTNBaseContact
::
dumpRestart
(
file_name
);
this
->
masters
.
dumpRestartFile
(
file_name
);
this
->
lumped_boundary_masters
.
dumpRestartFile
(
file_name
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
readRestart
(
const
std
::
string
&
file_name
)
{
AKANTU_DEBUG_IN
();
NTNBaseContact
::
readRestart
(
file_name
);
this
->
masters
.
readRestartFile
(
file_name
);
this
->
lumped_boundary_masters
.
readRestartFile
(
file_name
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
updateImpedance
()
{
AKANTU_DEBUG_IN
();
UInt
nb_contact_nodes
=
getNbContactNodes
();
Real
delta_t
=
this
->
model
.
getTimeStep
();
AKANTU_DEBUG_ASSERT
(
delta_t
!=
NAN
,
"Time step is NAN. Have you set it already?"
);
const
Array
<
Real
>
&
mass
=
this
->
model
.
getMass
();
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
UInt
master
=
this
->
masters
(
n
);
UInt
slave
=
this
->
slaves
(
n
);
Real
imp
=
(
this
->
lumped_boundary_masters
(
n
)
/
mass
(
master
))
+
(
this
->
lumped_boundary_slaves
(
n
)
/
mass
(
slave
));
imp
=
2
/
delta_t
/
imp
;
this
->
impedance
(
n
)
=
imp
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
updateLumpedBoundary
()
{
AKANTU_DEBUG_IN
();
internalUpdateLumpedBoundary
(
this
->
slaves
.
getArray
(),
this
->
slave_elements
,
this
->
lumped_boundary_slaves
);
internalUpdateLumpedBoundary
(
this
->
masters
.
getArray
(),
this
->
master_elements
,
this
->
lumped_boundary_masters
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
applyContactPressure
()
{
AKANTU_DEBUG_IN
();
UInt
nb_ntn_pairs
=
getNbContactNodes
();
UInt
dim
=
this
->
model
.
getSpatialDimension
();
Array
<
Real
>
&
residual
=
this
->
model
.
getResidual
();
for
(
UInt
n
=
0
;
n
<
nb_ntn_pairs
;
++
n
)
{
UInt
master
=
this
->
masters
(
n
);
UInt
slave
=
this
->
slaves
(
n
);
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
residual
(
master
,
d
)
+=
this
->
lumped_boundary_masters
(
n
)
*
this
->
contact_pressure
(
n
,
d
);
residual
(
slave
,
d
)
-=
this
->
lumped_boundary_slaves
(
n
)
*
this
->
contact_pressure
(
n
,
d
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
computeRelativeTangentialField
(
const
Array
<
Real
>
&
field
,
Array
<
Real
>
&
rel_tang_field
)
const
{
AKANTU_DEBUG_IN
();
// resize arrays to zero
rel_tang_field
.
resize
(
0
);
UInt
dim
=
this
->
model
.
getSpatialDimension
();
Array
<
Real
>::
const_vector_iterator
it_field
=
field
.
begin
(
dim
);
Array
<
Real
>::
const_vector_iterator
it_normal
=
this
->
normals
.
getArray
().
begin
(
dim
);
Vector
<
Real
>
rfv
(
dim
);
Vector
<
Real
>
np_rfv
(
dim
);
UInt
nb_contact_nodes
=
this
->
slaves
.
getSize
();
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
// nodes
UInt
slave
=
this
->
slaves
(
n
);
UInt
master
=
this
->
masters
(
n
);
// relative field vector (slave - master)
rfv
=
Vector
<
Real
>
(
it_field
[
slave
]);
rfv
-=
Vector
<
Real
>
(
it_field
[
master
]);
// normal projection of relative field
const
Vector
<
Real
>
normal_v
=
it_normal
[
n
];
np_rfv
=
normal_v
;
np_rfv
*=
rfv
.
dot
(
normal_v
);
// subract normal projection from relative field to get the tangential projection
rfv
-=
np_rfv
;
rel_tang_field
.
push_back
(
rfv
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
computeRelativeNormalField
(
const
Array
<
Real
>
&
field
,
Array
<
Real
>
&
rel_normal_field
)
const
{
AKANTU_DEBUG_IN
();
// resize arrays to zero
rel_normal_field
.
resize
(
0
);
UInt
dim
=
this
->
model
.
getSpatialDimension
();
// Real * field_p = field.storage();
// Real * normals_p = this->normals.storage();
Array
<
Real
>::
const_iterator
<
Vector
<
Real
>
>
it_field
=
field
.
begin
(
dim
);
Array
<
Real
>::
const_iterator
<
Vector
<
Real
>
>
it_normal
=
this
->
normals
.
getArray
().
begin
(
dim
);
Vector
<
Real
>
rfv
(
dim
);
UInt
nb_contact_nodes
=
this
->
getNbContactNodes
();
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
// nodes
UInt
slave
=
this
->
slaves
(
n
);
UInt
master
=
this
->
masters
(
n
);
// relative field vector (slave - master)
rfv
=
Vector
<
Real
>
(
it_field
[
slave
]);
rfv
-=
Vector
<
Real
>
(
it_field
[
master
]);
// length of normal projection of relative field
const
Vector
<
Real
>
normal_v
=
it_normal
[
n
];
rel_normal_field
.
push_back
(
rfv
.
dot
(
normal_v
));
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Int
NTNContact
::
getNodeIndex
(
UInt
node
)
const
{
AKANTU_DEBUG_IN
();
Int
slave_i
=
NTNBaseContact
::
getNodeIndex
(
node
);
Int
master_i
=
this
->
masters
.
find
(
node
);
AKANTU_DEBUG_OUT
();
return
std
::
max
(
slave_i
,
master_i
);
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
AKANTU_DEBUG_IN
();
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
);
stream
<<
space
<<
"NTNContact ["
<<
std
::
endl
;
NTNBaseContact
::
printself
(
stream
,
indent
);
stream
<<
space
<<
" + masters : "
<<
std
::
endl
;
this
->
masters
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" + lumped_boundary_mastres : "
<<
std
::
endl
;
this
->
lumped_boundary_masters
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
syncArrays
(
SyncChoice
sync_choice
)
{
AKANTU_DEBUG_IN
();
NTNBaseContact
::
syncArrays
(
sync_choice
);
this
->
masters
.
syncElements
(
sync_choice
);
this
->
lumped_boundary_masters
.
syncElements
(
sync_choice
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
addDumpFieldToDumper
(
const
std
::
string
&
dumper_name
,
const
std
::
string
&
field_id
)
{
AKANTU_DEBUG_IN
();
/*
#ifdef AKANTU_USE_IOHELPER
const Array<UInt> & nodal_filter = this->slaves.getArray();
#define ADD_FIELD(field_id, field, type) \
internalAddDumpFieldToDumper(dumper_name, \
field_id, \
new DumperIOHelper::NodalField< type, true, \
Array<type>, \
Array<UInt> >(field, 0, 0, &nodal_filter))
*/
if
(
field_id
==
"lumped_boundary_master"
)
{
internalAddDumpFieldToDumper
(
dumper_name
,
field_id
,
new
dumper
::
NodalField
<
Real
>
(
this
->
lumped_boundary_masters
.
getArray
()));
}
else
{
NTNBaseContact
::
addDumpFieldToDumper
(
dumper_name
,
field_id
);
}
/*
#undef ADD_FIELD
#endif
*/
AKANTU_DEBUG_OUT
();
}
__END_AKANTU__
Event Timeline
Log In to Comment