Page MenuHomec4science

integrator_gauss_inline_impl.cc
No OneTemporary

File Metadata

Created
Tue, Jan 21, 12:46

integrator_gauss_inline_impl.cc

/**
* @file integrator_gauss_inline_impl.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Tue Feb 15 2011
* @date last modification: Mon Jun 23 2014
*
* @brief inline function of gauss integrator
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
__END_AKANTU__
#include "fe_engine.hh"
#if defined(AKANTU_DEBUG_TOOLS)
# include "aka_debug_tools.hh"
#endif
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
inline void IntegratorGauss<kind>::initIntegrator(const Array<Real> & nodes,
const ElementType & type,
const GhostType & ghost_type) {
#define INIT_INTEGRATOR(type) \
computeQuadraturePoints<type>(ghost_type); \
precomputeJacobiansOnQuadraturePoints<type>(nodes, ghost_type); \
checkJacobians<type>(ghost_type);
AKANTU_BOOST_ALL_ELEMENT_SWITCH(INIT_INTEGRATOR);
#undef INIT_INTEGRATOR
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
inline void IntegratorGauss<kind>::integrateOnElement(const Array<Real> & f,
Real * intf,
UInt nb_degree_of_freedom,
const UInt elem,
const GhostType & ghost_type) const {
Array<Real> & jac_loc = jacobians(type, ghost_type);
UInt nb_quadrature_points = ElementClass<type>::getNbQuadraturePoints();
AKANTU_DEBUG_ASSERT(f.getNbComponent() == nb_degree_of_freedom ,
"The vector f do not have the good number of component.");
Real * f_val = f.storage() + elem * f.getNbComponent();
Real * jac_val = jac_loc.storage() + elem * nb_quadrature_points;
integrate(f_val, jac_val, intf, nb_degree_of_freedom, nb_quadrature_points);
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
inline Real IntegratorGauss<kind>::integrate(const Vector<Real> & in_f,
UInt index,
const GhostType & ghost_type) const {
const Array<Real> & jac_loc = jacobians(type, ghost_type);
UInt nb_quadrature_points = GaussIntegrationElement<type>::getNbQuadraturePoints();
AKANTU_DEBUG_ASSERT(in_f.size() == nb_quadrature_points ,
"The vector f do not have nb_quadrature_points entries.");
Real * jac_val = jac_loc.storage() + index * nb_quadrature_points;
Real intf;
integrate(in_f.storage(), jac_val, &intf, 1, nb_quadrature_points);
return intf;
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
inline void IntegratorGauss<kind>::integrate(Real *f, Real *jac, Real * inte,
UInt nb_degree_of_freedom,
UInt nb_quadrature_points) const {
memset(inte, 0, nb_degree_of_freedom * sizeof(Real));
Real *cjac = jac;
for (UInt q = 0; q < nb_quadrature_points; ++q) {
for (UInt dof = 0; dof < nb_degree_of_freedom; ++dof) {
inte[dof] += *f * *cjac;
++f;
}
++cjac;
}
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
inline const Matrix<Real> & IntegratorGauss<kind>::getQuadraturePoints(const GhostType & ghost_type) const {
AKANTU_DEBUG_ASSERT(quadrature_points.exists(type, ghost_type),
"Quadrature points for type "
<< quadrature_points.printType(type, ghost_type)
<< " have not been initialized."
<< " Did you use 'computeQuadraturePoints' function ?");
return quadrature_points(type, ghost_type);
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
inline void IntegratorGauss<kind>::computeQuadraturePoints(const GhostType & ghost_type) {
Matrix<Real> & quads = quadrature_points(type, ghost_type);
quads = GaussIntegrationElement<type>::getQuadraturePoints();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
inline void IntegratorGauss<kind>::
computeJacobianOnQuadPointsByElement(const Matrix<Real> & node_coords,
Vector<Real> & jacobians) {
Matrix<Real> quad = GaussIntegrationElement<type>::getQuadraturePoints();
// jacobian
ElementClass<type>::computeJacobian(quad, node_coords, jacobians);
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
IntegratorGauss<kind>::IntegratorGauss(const Mesh & mesh,
const ID & id,
const MemoryID & memory_id) :
Integrator(mesh, id, memory_id) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
void IntegratorGauss<kind>::checkJacobians(const GhostType & ghost_type) const {
AKANTU_DEBUG_IN();
UInt nb_quadrature_points = GaussIntegrationElement<type>::getNbQuadraturePoints();
UInt nb_element;
nb_element = mesh.getConnectivity(type,ghost_type).getSize();
Real * jacobians_val = jacobians(type, ghost_type).storage();
for (UInt i = 0; i < nb_element*nb_quadrature_points; ++i,++jacobians_val){
if(*jacobians_val < 0)
AKANTU_DEBUG_ERROR("Negative jacobian computed,"
<< " possible problem in the element node ordering (Quadrature Point "
<< i % nb_quadrature_points << ":"
<< i / nb_quadrature_points << ":"
<< type << ":"
<< ghost_type << ")");
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
void IntegratorGauss<kind>::precomputeJacobiansOnQuadraturePoints(const Array<Real> & nodes,
const GhostType & ghost_type) {
AKANTU_DEBUG_IN();
UInt spatial_dimension = mesh.getSpatialDimension();
UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
UInt nb_quadrature_points = GaussIntegrationElement<type>::getNbQuadraturePoints();
UInt nb_element = mesh.getNbElement(type,ghost_type);
Array<Real> * jacobians_tmp;
if(!jacobians.exists(type, ghost_type))
jacobians_tmp = &jacobians.alloc(nb_element*nb_quadrature_points,
1,
type,
ghost_type);
else {
jacobians_tmp = &jacobians(type, ghost_type);
jacobians_tmp->resize(nb_element*nb_quadrature_points);
}
Array<Real>::vector_iterator jacobians_it =
jacobians_tmp->begin_reinterpret(nb_quadrature_points, nb_element);
Vector<Real> weights = GaussIntegrationElement<type>::getWeights();
Array<Real> x_el(0, spatial_dimension * nb_nodes_per_element);
FEEngine::extractNodalToElementField(mesh, nodes, x_el, type, ghost_type);
Array<Real>::const_matrix_iterator x_it = x_el.begin(spatial_dimension,
nb_nodes_per_element);
// Matrix<Real> local_coord(spatial_dimension, nb_nodes_per_element);
for (UInt elem = 0; elem < nb_element; ++elem, ++jacobians_it, ++x_it) {
const Matrix<Real> & x = *x_it;
Vector<Real> & J = *jacobians_it;
computeJacobianOnQuadPointsByElement<type>(x, J);
J *= weights;
}
// >>>>>> DEBUG CODE >>>>>> //
#if defined(AKANTU_DEBUG_TOOLS)
#if defined(AKANTU_CORE_CXX11)
debug::element_manager.print(debug::_dm_integrator,
[ghost_type, this,
nb_element, nb_quadrature_points](const Element & el)->std::string {
std::stringstream out;
if(el.ghost_type == ghost_type) {
Array<Real>::vector_iterator jacobians_it =
jacobians(el.type, el.ghost_type).begin(nb_quadrature_points);
out << " jacobian: " << jacobians_it[el.element];
}
return out.str();
});
#endif
#endif
// <<<<<< DEBUG CODE <<<<<< //
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
#if defined(AKANTU_COHESIVE_ELEMENT)
template <>
template <ElementType type>
void IntegratorGauss<_ek_cohesive>::precomputeJacobiansOnQuadraturePoints(const Array<Real> & nodes,
const GhostType & ghost_type) {
AKANTU_DEBUG_IN();
UInt spatial_dimension = mesh.getSpatialDimension();
UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
UInt nb_quadrature_points = GaussIntegrationElement<type>::getNbQuadraturePoints();
UInt nb_element = mesh.getNbElement(type,ghost_type);
Array<Real> * jacobians_tmp;
if(!jacobians.exists(type, ghost_type))
jacobians_tmp = &jacobians.alloc(nb_element*nb_quadrature_points,
1,
type,
ghost_type);
else {
jacobians_tmp = &jacobians(type, ghost_type);
jacobians_tmp->resize(nb_element*nb_quadrature_points);
}
Array<Real>::vector_iterator jacobians_it =
jacobians_tmp->begin_reinterpret(nb_quadrature_points, nb_element);
Vector<Real> weights = GaussIntegrationElement<type>::getWeights();
Array<Real> x_el(0, spatial_dimension * nb_nodes_per_element);
FEEngine::extractNodalToElementField(mesh, nodes, x_el, type, ghost_type);
Array<Real>::const_matrix_iterator x_it = x_el.begin(spatial_dimension,
nb_nodes_per_element);
UInt nb_nodes_per_subelement = nb_nodes_per_element / 2;
Matrix<Real> x(spatial_dimension, nb_nodes_per_subelement);
// Matrix<Real> local_coord(spatial_dimension, nb_nodes_per_element);
for (UInt elem = 0; elem < nb_element; ++elem, ++jacobians_it, ++x_it) {
for (UInt s = 0; s < spatial_dimension; ++s)
for (UInt n = 0; n < nb_nodes_per_subelement; ++n)
x(s, n) = ((*x_it)(s, n) + (*x_it)(s, n + nb_nodes_per_subelement))*.5;
Vector<Real> & J = *jacobians_it;
if (type == _cohesive_1d_2)
J(0) = 1;
else
computeJacobianOnQuadPointsByElement<type>(x, J);
J *= weights;
}
AKANTU_DEBUG_OUT();
}
#endif
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
void IntegratorGauss<kind>::integrate(const Array<Real> & in_f,
Array<Real> &intf,
UInt nb_degree_of_freedom,
const GhostType & ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
UInt nb_points = GaussIntegrationElement<type>::getNbQuadraturePoints();
const Array<Real> & jac_loc = jacobians(type, ghost_type);
Array<Real>::const_matrix_iterator J_it;
Array<Real>::matrix_iterator inte_it;
Array<Real>::const_matrix_iterator f_it;
UInt nb_element;
Array<Real> * filtered_J = NULL;
if(filter_elements != empty_filter) {
nb_element = filter_elements.getSize();
filtered_J = new Array<Real>(0, jac_loc.getNbComponent());
FEEngine::filterElementalData(mesh, jac_loc, *filtered_J, type, ghost_type, filter_elements);
const Array<Real> & cfiltered_J = *filtered_J; // \todo temporary patch
J_it = cfiltered_J.begin_reinterpret(nb_points, 1, nb_element);
} else {
nb_element = mesh.getNbElement(type,ghost_type);
J_it = jac_loc.begin_reinterpret(nb_points, 1, nb_element);
}
intf.resize(nb_element);
f_it = in_f.begin_reinterpret(nb_degree_of_freedom, nb_points, nb_element);
inte_it = intf.begin_reinterpret(nb_degree_of_freedom, 1, nb_element);
for (UInt el = 0; el < nb_element; ++el, ++J_it, ++f_it, ++inte_it) {
const Matrix<Real> & f = *f_it;
const Matrix<Real> & J = *J_it;
Matrix<Real> & inte_f = *inte_it;
inte_f.mul<false, false>(f, J);
}
delete filtered_J;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
Real IntegratorGauss<kind>::integrate(const Array<Real> & in_f,
const GhostType & ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
Array<Real> intfv(0, 1);
integrate<type>(in_f, intfv, 1, ghost_type, filter_elements);
UInt nb_values = intfv.getSize();
if(nb_values == 0) return 0.;
UInt nb_values_to_sum = nb_values >> 1;
std::sort(intfv.begin(), intfv.end());
// as long as the half is not empty
while(nb_values_to_sum) {
UInt remaining = (nb_values - 2*nb_values_to_sum);
if(remaining) intfv(nb_values - 2) += intfv(nb_values - 1);
// sum to consecutive values and store the sum in the first half
for (UInt i = 0; i < nb_values_to_sum; ++i) {
intfv(i) = intfv(2*i) + intfv(2*i + 1);
}
nb_values = nb_values_to_sum;
nb_values_to_sum >>= 1;
}
AKANTU_DEBUG_OUT();
return intfv(0);
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind>
template <ElementType type>
void IntegratorGauss<kind>::integrateOnQuadraturePoints(const Array<Real> & in_f,
Array<Real> &intf,
UInt nb_degree_of_freedom,
const GhostType & ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
UInt nb_element;
UInt nb_points = GaussIntegrationElement<type>::getNbQuadraturePoints();
const Array<Real> & jac_loc = jacobians(type, ghost_type);
Array<Real>::const_scalar_iterator J_it;
Array<Real>::vector_iterator inte_it;
Array<Real>::const_vector_iterator f_it;
Array<Real> * filtered_J = NULL;
if(filter_elements != empty_filter) {
nb_element = filter_elements.getSize();
filtered_J = new Array<Real>(0, jac_loc.getNbComponent());
FEEngine::filterElementalData(mesh, jac_loc, *filtered_J, type, ghost_type, filter_elements);
J_it = filtered_J->begin();
} else {
nb_element = mesh.getNbElement(type,ghost_type);
J_it = jac_loc.begin();
}
intf.resize(nb_element*nb_points);
f_it = in_f.begin(nb_degree_of_freedom);
inte_it = intf.begin(nb_degree_of_freedom);
for (UInt el = 0; el < nb_element; ++el, ++J_it, ++f_it, ++inte_it) {
const Real & J = *J_it;
const Vector<Real> & f = *f_it;
Vector<Real> & inte_f = *inte_it;
inte_f = f;
inte_f *= J;
}
delete filtered_J;
AKANTU_DEBUG_OUT();
}

Event Timeline