Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93892701
shape_cohesive_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Dec 2, 07:52
Size
11 KB
Mime Type
text/x-c++
Expires
Wed, Dec 4, 07:52 (2 d)
Engine
blob
Format
Raw Data
Handle
22713209
Attached To
rAKA akantu
shape_cohesive_inline_impl.hh
View Options
/**
* Copyright (©) 2012-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "mesh_iterators.hh"
//#include "shape_cohesive.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_SHAPE_COHESIVE_INLINE_IMPL_HH_
#define AKANTU_SHAPE_COHESIVE_INLINE_IMPL_HH_
namespace
akantu
{
/* -------------------------------------------------------------------------- */
inline
ShapeLagrange
<
_ek_cohesive
>::
ShapeLagrange
(
const
Mesh
&
mesh
,
Int
spatial_dimension
,
const
ID
&
id
)
:
ShapeLagrangeBase
(
mesh
,
spatial_dimension
,
_ek_cohesive
,
id
)
{}
/* -------------------------------------------------------------------------- */
inline
void
ShapeLagrange
<
_ek_cohesive
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
ElementType
type
,
GhostType
ghost_type
)
{
tuple_dispatch
<
ElementTypes_t
<
_ek_cohesive
>>
(
[
&
](
auto
&&
enum_type
)
{
constexpr
ElementType
type
=
aka
::
decay_v
<
decltype
(
enum_type
)
>
;
this
->
setIntegrationPointsByType
<
type
>
(
integration_points
,
ghost_type
);
this
->
precomputeShapesOnIntegrationPoints
<
type
>
(
nodes
,
ghost_type
);
this
->
precomputeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
ghost_type
);
},
type
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
,
const
Matrix
<
Real
>
&
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
auto
spatial_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
auto
nb_points
=
integration_points
.
cols
();
auto
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
size
();
AKANTU_DEBUG_ASSERT
(
shape_derivatives
.
getNbComponent
()
==
size_of_shapesd
,
"The shapes_derivatives array does not have the correct "
<<
"number of component"
);
shape_derivatives
.
resize
(
nb_element
*
nb_points
);
auto
*
shapesd_val
=
shape_derivatives
.
data
();
auto
compute
=
[
&
](
const
auto
&
el
)
{
auto
ptr
=
shapesd_val
+
el
*
nb_points
*
size_of_shapesd
;
Tensor3Proxy
<
Real
>
B
(
ptr
,
spatial_dimension
,
nb_nodes_per_element
,
nb_points
);
ElementClass
<
type
>::
computeDNDS
(
integration_points
,
B
);
};
for_each_element
(
nb_element
,
filter_elements
,
compute
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
inline
void
ShapeLagrange
<
_ek_cohesive
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Ref
<
const
MatrixXr
>
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
ElementType
type
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
tuple_dispatch
<
ElementTypes_t
<
_ek_cohesive
>>
(
[
&
](
auto
&&
enum_type
)
{
constexpr
ElementType
type
=
aka
::
decay_v
<
decltype
(
enum_type
)
>
;
this
->
computeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
integration_points
,
shape_derivatives
,
ghost_type
,
filter_elements
);
},
type
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
precomputeShapesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
auto
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
auto
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
auto
&
shapes_tmp
=
shapes
.
alloc
(
0
,
size_of_shapes
,
itp_type
,
ghost_type
);
this
->
computeShapesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
precomputeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
auto
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
auto
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
auto
&
shapes_derivatives_tmp
=
shapes_derivatives
.
alloc
(
0
,
size_of_shapesd
,
itp_type
,
ghost_type
);
this
->
computeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_derivatives_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
extractNodalToElementField
(
const
Array
<
Real
>
&
nodal_f
,
Array
<
Real
>
&
elemental_f
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
nb_nodes_per_itp_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
auto
nb_degree_of_freedom
=
nodal_f
.
getNbComponent
();
auto
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
const
auto
&
conn_array
=
this
->
mesh
.
getConnectivity
(
type
,
ghost_type
);
auto
conn
=
make_view
(
conn_array
,
conn_array
.
getNbComponent
()
/
2
,
2
).
begin
();
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
}
elemental_f
.
resize
(
nb_element
);
auto
u_it
=
make_view
(
elemental_f
,
nb_degree_of_freedom
,
nb_nodes_per_itp_element
)
.
begin
();
auto
nodal_f_it
=
make_view
(
nodal_f
,
nb_degree_of_freedom
).
begin
();
ReduceFunction
reduce_function
;
auto
compute
=
[
&
](
const
auto
&
el
)
{
auto
&&
u
=
*
u_it
;
auto
&&
el_conn
=
conn
[
el
];
// compute the average/difference of the nodal field loaded from cohesive
// element
for
(
Int
n
=
0
;
n
<
el_conn
.
rows
();
++
n
)
{
auto
node_plus
=
el_conn
(
n
,
0
);
auto
node_minus
=
el_conn
(
n
,
1
);
u
(
n
)
=
reduce_function
(
nodal_f_it
[
node_plus
],
nodal_f_it
[
node_minus
]);
}
++
u_it
;
};
for_each_element
(
nb_element
,
filter_elements
,
compute
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
Int
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
this
->
shapes
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
this
->
shapes
.
printType
(
itp_type
,
ghost_type
));
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
this
->
extractNodalToElementField
<
type
,
ReduceFunction
>
(
in_u
,
u_el
,
ghost_type
,
filter_elements
);
this
->
template
interpolateElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
out_uq
,
ghost_type
,
shapes
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
variationOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
nablauq
,
Int
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
this
->
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
this
->
shapes_derivatives
.
printType
(
itp_type
,
ghost_type
));
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
this
->
extractNodalToElementField
<
type
,
ReduceFunction
>
(
in_u
,
u_el
,
ghost_type
,
filter_elements
);
this
->
template
gradientElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
nablauq
,
ghost_type
,
shapes_derivatives
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
computeNormalsOnIntegrationPoints
(
const
Array
<
Real
>
&
u
,
Array
<
Real
>
&
normals_u
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
auto
nb_points
=
this
->
integration_points
(
type
,
ghost_type
).
cols
();
auto
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
}
normals_u
.
resize
(
nb_points
*
nb_element
);
Array
<
Real
>
tangents_u
(
0
,
(
spatial_dimension
*
(
spatial_dimension
-
1
)));
if
(
spatial_dimension
>
1
)
{
tangents_u
.
resize
(
nb_element
*
nb_points
);
this
->
template
variationOnIntegrationPoints
<
type
,
ReduceFunction
>
(
u
,
tangents_u
,
spatial_dimension
,
ghost_type
,
filter_elements
);
}
if
(
spatial_dimension
==
3
)
{
for
(
auto
&&
data
:
zip
(
make_view
<
3
>
(
normals_u
),
make_view
<
3
,
2
>
(
tangents_u
)))
{
auto
&&
n
=
std
::
get
<
0
>
(
data
);
auto
&&
ts
=
std
::
get
<
1
>
(
data
);
n
=
(
ts
(
0
).
cross
(
ts
(
1
))).
normalized
();
}
}
else
if
(
spatial_dimension
==
2
)
{
for
(
auto
&&
data
:
zip
(
make_view
<
2
>
(
normals_u
),
make_view
<
2
>
(
tangents_u
)))
{
auto
&&
n
=
std
::
get
<
0
>
(
data
);
auto
&&
t
=
std
::
get
<
1
>
(
data
);
n
(
0
)
=
-
t
(
1
);
n
(
1
)
=
t
(
0
);
n
.
normalize
();
}
}
else
if
(
spatial_dimension
==
1
)
{
const
auto
facet_type
=
Mesh
::
getFacetType
(
type
);
const
auto
&
mesh_facets
=
mesh
.
getMeshFacets
();
const
auto
&
facets
=
mesh_facets
.
getSubelementToElement
(
type
,
ghost_type
);
const
auto
&
segments
=
mesh_facets
.
getElementToSubelement
(
facet_type
,
ghost_type
);
Matrix
<
Real
>
barycenter
(
1
,
2
);
for
(
auto
el
:
arange
(
nb_element
))
{
if
(
filter_elements
!=
empty_filter
)
{
el
=
filter_elements
(
el
);
}
for
(
Int
p
=
0
;
p
<
2
;
++
p
)
{
const
Element
&
facet
=
facets
(
el
,
p
);
const
Element
&
segment
=
segments
(
facet
.
element
)[
0
];
mesh
.
getBarycenter
(
segment
,
barycenter
(
p
));
}
Real
difference
=
barycenter
(
0
,
0
)
-
barycenter
(
0
,
1
);
AKANTU_DEBUG_ASSERT
(
difference
!=
0.
,
"Error in normal computation for cohesive elements"
);
normals_u
(
el
)
=
difference
/
std
::
abs
(
difference
);
}
}
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
#endif
/* AKANTU_SHAPE_COHESIVE_INLINE_IMPL_HH_ */
Event Timeline
Log In to Comment