Page MenuHomec4science

shape_functions_inline_impl.cc
No OneTemporary

File Metadata

Created
Tue, Jan 21, 12:12

shape_functions_inline_impl.cc

/**
* @file shape_functions_inline_impl.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Fabian Barras <fabian.barras@epfl.ch>
*
* @date creation: Fri Jul 15 2011
* @date last modification: Fri Jun 13 2014
*
* @brief ShapeFunctions inline implementation
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
__END_AKANTU__
#include "fe_engine.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
inline UInt ShapeFunctions::getShapeSize(const ElementType & type) {
AKANTU_DEBUG_IN();
UInt shape_size = 0;
#define GET_SHAPE_SIZE(type) \
shape_size = ElementClass<type>::getShapeSize()
AKANTU_BOOST_ALL_ELEMENT_SWITCH(GET_SHAPE_SIZE);// ,
#undef GET_SHAPE_SIZE
AKANTU_DEBUG_OUT();
return shape_size;
}
/* -------------------------------------------------------------------------- */
inline UInt ShapeFunctions::getShapeDerivativesSize(const ElementType & type) {
AKANTU_DEBUG_IN();
UInt shape_derivatives_size = 0;
#define GET_SHAPE_DERIVATIVES_SIZE(type) \
shape_derivatives_size = ElementClass<type>::getShapeDerivativesSize()
AKANTU_BOOST_ALL_ELEMENT_SWITCH(GET_SHAPE_DERIVATIVES_SIZE);// ,
#undef GET_SHAPE_DERIVATIVES_SIZE
AKANTU_DEBUG_OUT();
return shape_derivatives_size;
}
/* -------------------------------------------------------------------------- */
template <ElementType type>
void ShapeFunctions::setControlPointsByType(const Matrix<Real> & points,
const GhostType & ghost_type) {
control_points(type, ghost_type).shallowCopy(points);
}
/* -------------------------------------------------------------------------- */
template <ElementType type>
void ShapeFunctions::interpolateElementalFieldOnControlPoints(const Array<Real> &u_el,
Array<Real> &uq,
GhostType ghost_type,
const Array<Real> & shapes,
const Array<UInt> & filter_elements) const {
UInt nb_element;
UInt nb_points = control_points(type, ghost_type).cols();
UInt nb_nodes_per_element = ElementClass<type>::getShapeSize();
UInt nb_degree_of_freedom = u_el.getNbComponent() / nb_nodes_per_element;
Array<Real>::const_matrix_iterator N_it;
Array<Real>::const_matrix_iterator u_it;
Array<Real>::matrix_iterator inter_u_it;
Array<Real> * filtered_N = NULL;
if(filter_elements != empty_filter) {
nb_element = filter_elements.getSize();
filtered_N = new Array<Real>(0, shapes.getNbComponent());
FEEngine::filterElementalData(mesh, shapes, *filtered_N, type, ghost_type, filter_elements);
N_it = filtered_N->begin_reinterpret(nb_nodes_per_element, nb_points, nb_element);
} else {
nb_element = mesh.getNbElement(type,ghost_type);
N_it = shapes.begin_reinterpret(nb_nodes_per_element, nb_points, nb_element);
}
uq.resize(nb_element*nb_points);
u_it = u_el.begin(nb_degree_of_freedom, nb_nodes_per_element);
inter_u_it = uq.begin_reinterpret(nb_degree_of_freedom, nb_points, nb_element);
for (UInt el = 0; el < nb_element; ++el, ++N_it, ++u_it, ++inter_u_it) {
const Matrix<Real> & u = *u_it;
const Matrix<Real> & N = *N_it;
Matrix<Real> & inter_u = *inter_u_it;
inter_u.mul<false, false>(u, N);
}
delete filtered_N;
}
/* -------------------------------------------------------------------------- */
template <ElementType type>
void ShapeFunctions::gradientElementalFieldOnControlPoints(const Array<Real> &u_el,
Array<Real> &out_nablauq,
GhostType ghost_type,
const Array<Real> & shapes_derivatives,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
UInt nb_nodes_per_element = ElementClass<type>::getNbNodesPerInterpolationElement();
UInt nb_points = control_points(type, ghost_type).cols();
UInt element_dimension = ElementClass<type>::getNaturalSpaceDimension();
UInt nb_degree_of_freedom = u_el.getNbComponent() / nb_nodes_per_element;
Array<Real>::const_matrix_iterator B_it;
Array<Real>::const_matrix_iterator u_it;
Array<Real>::matrix_iterator nabla_u_it;
UInt nb_element;
Array<Real> * filtered_B = NULL;
if(filter_elements != empty_filter) {
nb_element = filter_elements.getSize();
filtered_B = new Array<Real>(0, shapes_derivatives.getNbComponent());
FEEngine::filterElementalData(mesh, shapes_derivatives, *filtered_B, type, ghost_type, filter_elements);
B_it = filtered_B->begin(element_dimension, nb_nodes_per_element);
} else {
B_it = shapes_derivatives.begin(element_dimension, nb_nodes_per_element);
nb_element = mesh.getNbElement(type, ghost_type);
}
out_nablauq.resize(nb_element*nb_points);
u_it = u_el.begin(nb_degree_of_freedom, nb_nodes_per_element);
nabla_u_it = out_nablauq.begin(nb_degree_of_freedom, element_dimension);
for (UInt el = 0; el < nb_element; ++el, ++u_it) {
const Matrix<Real> & u = *u_it;
for (UInt q = 0; q < nb_points; ++q, ++B_it, ++nabla_u_it) {
const Matrix<Real> & B = *B_it;
Matrix<Real> & nabla_u = *nabla_u_it;
nabla_u.mul<false, true>(u, B);
}
}
delete filtered_B;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */

Event Timeline