Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91592182
integrator_gauss.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 12, 13:08
Size
8 KB
Mime Type
text/x-c++
Expires
Thu, Nov 14, 13:08 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22211877
Attached To
rAKA akantu
integrator_gauss.hh
View Options
/**
* @file integrator_gauss.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Wed Nov 08 2017
*
* @brief Gauss integration facilities
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "integrator.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_INTEGRATOR_GAUSS_HH_
#define AKANTU_INTEGRATOR_GAUSS_HH_
namespace akantu {
namespace integrator {
namespace details {
template <ElementKind> struct GaussIntegratorComputeJacobiansHelper;
} // namespace details
} // namespace integrator
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
class IntegratorGauss : public Integrator {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
IntegratorGauss(const Mesh & mesh, UInt spatial_dimension,
const ID & id = "integrator_gauss");
~IntegratorGauss() override = default;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public:
void initIntegrator(const Array<Real> & nodes, ElementType type,
GhostType ghost_type);
template <ElementType type>
inline void initIntegrator(const Array<Real> & nodes,
GhostType ghost_type);
/// integrate f on the element "elem" of type "type"
template <ElementType type>
inline void integrateOnElement(const Array<Real> & f, Real * intf,
UInt nb_degree_of_freedom, UInt elem,
GhostType ghost_type) const;
/// integrate f for all elements of type "type"
template <ElementType type>
void integrate(const Array<Real> & in_f, Array<Real> & intf,
UInt nb_degree_of_freedom, GhostType ghost_type,
const Array<UInt> & filter_elements) const;
/// integrate scalar field in_f
template <ElementType type, UInt polynomial_degree>
Real integrate(const Array<Real> & in_f,
GhostType ghost_type = _not_ghost) const;
/// integrate partially around a quadrature point (@f$ intf_q = f_q * J_q *
/// w_q @f$)
template <ElementType type>
Real integrate(const Vector<Real> & in_f, UInt index,
GhostType ghost_type) const;
/// integrate scalar field in_f
template <ElementType type>
Real integrate(const Array<Real> & in_f, GhostType ghost_type,
const Array<UInt> & filter_elements) const;
/// integrate a field without using the pre-computed values
template <ElementType type, UInt polynomial_degree>
void integrate(const Array<Real> & in_f, Array<Real> & intf,
UInt nb_degree_of_freedom, GhostType ghost_type) const;
/// integrate partially around a quadrature point (@f$ intf_q = f_q * J_q *
/// w_q @f$)
template <ElementType type>
void integrateOnIntegrationPoints(const Array<Real> & in_f,
Array<Real> & intf,
UInt nb_degree_of_freedom,
GhostType ghost_type,
const Array<UInt> & filter_elements) const;
/// return a matrix with quadrature points natural coordinates
template <ElementType type>
const Matrix<Real> & getIntegrationPoints(GhostType ghost_type) const;
/// return number of quadrature points
template <ElementType type>
UInt getNbIntegrationPoints(GhostType ghost_type) const;
template <ElementType type, UInt n> Matrix<Real> getIntegrationPoints() const;
template <ElementType type, UInt n>
Vector<Real> getIntegrationWeights() const;
protected:
friend struct integrator::details::GaussIntegratorComputeJacobiansHelper<
kind>;
template <ElementType type>
void computeJacobiansOnIntegrationPoints(
const Array<Real> & nodes, const Matrix<Real> & quad_points,
Array<Real> & jacobians, GhostType ghost_type,
const Array<UInt> & filter_elements = empty_filter) const;
void computeJacobiansOnIntegrationPoints(
const Array<Real> & nodes, const Matrix<Real> & quad_points,
Array<Real> & jacobians, ElementType type,
GhostType ghost_type,
const Array<UInt> & filter_elements = empty_filter) const;
/// precompute jacobians on elements of type "type"
template <ElementType type>
void precomputeJacobiansOnQuadraturePoints(const Array<Real> & nodes,
GhostType ghost_type);
// multiply the jacobians by the integration weights and stores the results in
// jacobians
template <ElementType type, UInt polynomial_degree>
void multiplyJacobiansByWeights(
Array<Real> & jacobians,
const Array<UInt> & filter_elements = empty_filter) const;
/// compute the vector of quadrature points natural coordinates
template <ElementType type>
void computeQuadraturePoints(GhostType ghost_type);
/// check that the jacobians are not negative
template <ElementType type>
void checkJacobians(GhostType ghost_type) const;
/// internal integrate partially around a quadrature point (@f$ intf_q = f_q *
/// J_q *
/// w_q @f$)
void integrateOnIntegrationPoints(const Array<Real> & in_f,
Array<Real> & intf,
UInt nb_degree_of_freedom,
const Array<Real> & jacobians,
UInt nb_element) const;
void integrate(const Array<Real> & in_f, Array<Real> & intf,
UInt nb_degree_of_freedom, const Array<Real> & jacobians,
UInt nb_element) const;
public:
/// compute the jacobians on quad points for a given element
template <ElementType type>
void computeJacobianOnQuadPointsByElement(const Matrix<Real> & node_coords,
const Matrix<Real> & quad,
Vector<Real> & jacobians) const;
public:
void onElementsAdded(const Array<Element> & elements) override;
template <ElementType type>
void onElementsAddedByType(const Array<UInt> & new_elements,
GhostType ghost_type);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
/// integrate the field f with the jacobian jac -> inte
inline void integrate(Real * f, Real * jac, Real * inte,
UInt nb_degree_of_freedom,
UInt nb_quadrature_points) const;
private:
/// ElementTypeMap of the quadrature points
ElementTypeMap<Matrix<Real>> quadrature_points;
};
} // namespace akantu
#include "integrator_gauss_inline_impl.hh"
#endif /* AKANTU_INTEGRATOR_GAUSS_HH_ */
Event Timeline
Log In to Comment