Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90817036
manual-cohesive_elements.tex
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 01:07
Size
4 KB
Mime Type
text/x-tex
Expires
Thu, Nov 7, 01:07 (2 d)
Engine
blob
Format
Raw Data
Handle
18289143
Attached To
rAKA akantu
manual-cohesive_elements.tex
View Options
\section
{
Cohesive Elements
}
The cohesive elements that have been implemented in
\akantu
are based
on the work of Ortiz and Pandolfi~
\cite
{
ortiz1999
}
. Their main
properties are reported in Table~
\ref
{
tab:coh:cohesive
_
elements
}
.
\begin
{
table
}
[!htb]
\begin
{
center
}
\begin
{
tabular
}{
l|llcc
}
\toprule
Element type
&
Facet type
&
Order
&
\#
nodes
&
\#
quad. points
\\
\midrule
\texttt
{
\_
cohesive
\_
1d
\_
2
}
&
\texttt
{
\_
point
\_
1
}
&
linear
&
2
&
1
\\
\hline
\texttt
{
\_
cohesive
\_
2d
\_
4
}
&
\texttt
{
\_
segment
\_
2
}
&
linear
&
4
&
1
\\
\texttt
{
\_
cohesive
\_
2d
\_
6
}
&
\texttt
{
\_
segment
\_
3
}
&
quadratic
&
6
&
2
\\
\hline
\texttt
{
\_
cohesive
\_
3d
\_
6
}
&
\texttt
{
\_
triangle
\_
3
}
&
linear
&
6
&
1
\\
\texttt
{
\_
cohesive
\_
3d
\_
12
}
&
\texttt
{
\_
triangle
\_
6
}
&
quadratic
&
12
&
3
\\
\bottomrule
\end
{
tabular
}
\end
{
center
}
\caption
{
Some basic properties of the cohesive elements in
\akantu
.
}
\label
{
tab:coh:cohesive
_
elements
}
\end
{
table
}
\begin
{
figure
}
\centering
\includegraphics
[width=.6\textwidth]
{
figures/cohesive2d
}
\caption
{
Cohesive element in 2D for quadratic triangular elements
T6.
}
\label
{
fig:smm:coh:cohesive2d
}
\end
{
figure
}
Cohesive element insertion can be either realized at the beginning of
the simulation or it can be carried out dynamically during the
simulation. The first approach is called
\emph
{
intrinsic
}
, the second
one
\emph
{
extrinsic
}
. When an element is present from the beginning, a
bilinear or exponential cohesive law should be used instead of a
linear one. A bilinear law works exactly like a linear one except for
an additional parameter
$
\delta
_
0
$
separating an initial linear
elastic part from the linear irreversible one. For additional details
concerning cohesive laws see Section~
\ref
{
sec:cohesive-laws
}
.
\begin
{
figure
}
\centering
\includegraphics
[width=.75\textwidth]
{
figures/insertion
}
\caption
{
Insertion of a cohesive element.
}
\label
{
fig:smm:coh:insertion
}
\end
{
figure
}
Extrinsic cohesive elements are dynamically inserted between two
standard elements when
\begin
{
equation
}
\sigma
_
\mathrm
{
eff
}
>
\sigma
_
\mathrm
{
c
}
\quad\text
{
with
}
\quad
\sigma
_
\mathrm
{
eff
}
=
\sqrt
{
\sigma
_
\mathrm
{
n
}^
2 +
\frac
{
\tau
^
2
}{
\beta
^
2
}}
\end
{
equation
}
in which
$
\sigma
_
\mathrm
{n}
$
is the tensile normal traction and
$
\tau
$
the resulting tangential one (Figure~
\ref
{
fig:smm:coh:insertion
}
).
For the static analysis of the structures containing cohesive
elements, the stiffness of the cohesive elements should also be added
to the total stiffness of the structure. Considering a 2D quadratic
cohesive element as that in Figure~
\ref
{
fig:smm:coh:cohesive2d
}
, the
opening displacement along the mid-surface can be written as:
\begin
{
equation
}
\label
{
eq:opening
}
\vec
{
\Delta
}
(s) =
\llbracket
\mat
{
u
}
\rrbracket
\,\mat
{
N
}
(s) =
\begin
{
bmatrix
}
u
_
3-u
_
0
&
u
_
4-u
_
1
&
u
_
5-u
_
2
\\
v
_
3-v
_
0
&
v
_
4-v
_
1
&
v
_
5-v
_
2
\end
{
bmatrix
}
\begin
{
bmatrix
}
N
_
0(s)
\\
N
_
1(s)
\\
N
_
2(s)
\end
{
bmatrix
}
=
\mat
{
N
}^
\mathrm
{
k
}
\mat
{
A U
}
=
\mat
{
PU
}
\end
{
equation
}
The
\mat
{
U
}
,
\mat
{
A
}
and
$
\mat
{N}^
\mathrm
{k}
$
are as following:
\begin
{
align
}
\mat
{
U
}
&
=
\left
[
\begin
{
array
}{
c c c c c c c c c c c c
}
u
_
0
&
v
_
0
&
u
_
1
&
v
_
1
&
u
_
2
&
v
_
2
&
u
_
3
&
v
_
3
&
u
_
4
&
v
_
4
&
u
_
5
&
v
_
5
\end
{
array
}
\right
]
\\
[1ex]
\mat
{
A
}
&
=
\left
[
\begin
{
array
}{
c c c c c c c c c c c c
}
1
&
0
&
0
&
0
&
0
&
0
&
-1
&
0
&
0
&
0
&
0
&
0
\\
0
&
1
&
0
&
0
&
0
&
0
&
0
&
-1
&
0
&
0
&
0
&
0
\\
0
&
0
&
1
&
0
&
0
&
0
&
0
&
0
&
-1
&
0
&
0
&
0
\\
0
&
0
&
0
&
1
&
0
&
0
&
0
&
0
&
0
&
-1
&
0
&
0
\\
0
&
0
&
0
&
0
&
1
&
0
&
0
&
0
&
0
&
0
&
-1
&
0
\\
0
&
0
&
0
&
0
&
0
&
1
&
0
&
0
&
0
&
0
&
0
&
-1
\end
{
array
}
\right
]
\\
[1ex]
\mat
{
N
}^
\mathrm
{
k
}
&
=
\begin
{
bmatrix
}
N
_
0(s)
&
0
&
N
_
1(s)
&
0
&
N
_
2(s)
&
0
\\
0
&
N
_
0(s)
&
0
&
N
_
1(s)
&
0
&
N
_
2(s)
\end
{
bmatrix
}
\end
{
align
}
The consistent stiffness matrix for the element is obtained as
\begin
{
equation
}
\label
{
eq:cohesive
_
stiffness
}
\mat
{
K
}
=
\int
_{
S
_
0
}
\mat
{
P
}^
\mathrm
{
T
}
\,
\frac
{
\partial
{
\vec
{
T
}}}
{
\partial
{
\delta
}}
\mat
{
P
}
\,\mathrm
{
d
}
S
_
0
\end
{
equation
}
where
$
\vec
{T}
$
is the cohesive traction and
$
\delta
$
the opening
displacement (for more details check
Section~
\ref
{
tab:coh:cohesive
_
elements
}
).
%%% Local Variables:
%%% mode: latex
%%% TeX-master: "manual"
%%% End:
Event Timeline
Log In to Comment