Page MenuHomec4science

ntn_friclaw_linear_slip_weakening_tmpl.hh
No OneTemporary

File Metadata

Created
Wed, Jun 26, 05:18

ntn_friclaw_linear_slip_weakening_tmpl.hh

/**
* @file ntn_friclaw_linear_slip_weakening_tmpl.hh
*
* @author David Simon Kammer <david.kammer@epfl.ch>
*
* @date creation: Tue Dec 02 2014
* @date last modification: Fri Feb 23 2018
*
* @brief implementation of linear slip weakening
*
*
* Copyright (©) 2015-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "dumper_text.hh"
namespace akantu {
/* -------------------------------------------------------------------------- */
template <class Regularisation>
NTNFricLawLinearSlipWeakening<Regularisation>::NTNFricLawLinearSlipWeakening(
NTNBaseContact & contact, const ID & id, const MemoryID & memory_id)
: NTNFricLawCoulomb<Regularisation>(contact, id, memory_id),
mu_s(0, 1, 0., id + ":mu_s", 0., "mu_s"),
mu_k(0, 1, 0., id + ":mu_k", 0., "mu_k"),
d_c(0, 1, 0., id + ":d_c", 0., "d_c") {
AKANTU_DEBUG_IN();
NTNFricLawCoulomb<Regularisation>::registerSynchronizedArray(this->mu_s);
NTNFricLawCoulomb<Regularisation>::registerSynchronizedArray(this->mu_k);
NTNFricLawCoulomb<Regularisation>::registerSynchronizedArray(this->d_c);
this->registerParam("mu_s", this->mu_s, _pat_parsmod,
"static friction coefficient");
this->registerParam("mu_k", this->mu_k, _pat_parsmod,
"kinetic friction coefficient");
this->registerParam("d_c", this->d_c, _pat_parsmod, "slip weakening length");
this->setParameterAccessType("mu", _pat_readable);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class Regularisation>
void NTNFricLawLinearSlipWeakening<
Regularisation>::computeFrictionalStrength() {
AKANTU_DEBUG_IN();
computeFrictionCoefficient();
NTNFricLawCoulomb<Regularisation>::computeFrictionalStrength();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class Regularisation>
void NTNFricLawLinearSlipWeakening<
Regularisation>::computeFrictionCoefficient() {
AKANTU_DEBUG_IN();
// get arrays
const SynchronizedArray<bool> & stick = this->internalGetIsSticking();
const SynchronizedArray<Real> & slip = this->internalGetSlip();
UInt nb_contact_nodes = this->contact.getNbContactNodes();
for (UInt n = 0; n < nb_contact_nodes; ++n) {
if (stick(n)) {
this->mu(n) = this->mu_s(n);
} else {
if (slip(n) >= this->d_c(n)) {
this->mu(n) = this->mu_k(n);
} else {
// mu = mu_k + (1 - slip / Dc) * (mu_s - mu_k)
this->mu(n) = this->mu_k(n) + (1 - (slip(n) / this->d_c(n))) *
(this->mu_s(n) - this->mu_k(n));
}
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class Regularisation>
void NTNFricLawLinearSlipWeakening<Regularisation>::registerSynchronizedArray(
SynchronizedArrayBase & array) {
AKANTU_DEBUG_IN();
this->mu_s.registerDependingArray(array);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class Regularisation>
void NTNFricLawLinearSlipWeakening<Regularisation>::dumpRestart(
const std::string & file_name) const {
AKANTU_DEBUG_IN();
this->mu_s.dumpRestartFile(file_name);
this->mu_k.dumpRestartFile(file_name);
this->d_c.dumpRestartFile(file_name);
NTNFricLawCoulomb<Regularisation>::dumpRestart(file_name);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class Regularisation>
void NTNFricLawLinearSlipWeakening<Regularisation>::readRestart(
const std::string & file_name) {
AKANTU_DEBUG_IN();
this->mu_s.readRestartFile(file_name);
this->mu_k.readRestartFile(file_name);
this->d_c.readRestartFile(file_name);
NTNFricLawCoulomb<Regularisation>::readRestart(file_name);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class Regularisation>
void NTNFricLawLinearSlipWeakening<Regularisation>::printself(
std::ostream & stream, int indent) const {
AKANTU_DEBUG_IN();
std::string space;
for (Int i = 0; i < indent; i++, space += AKANTU_INDENT)
;
stream << space << "NTNFricLawLinearSlipWeakening [" << std::endl;
NTNFricLawCoulomb<Regularisation>::printself(stream, ++indent);
stream << space << "]" << std::endl;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <class Regularisation>
void NTNFricLawLinearSlipWeakening<Regularisation>::addDumpFieldToDumper(
const std::string & dumper_name, const std::string & field_id) {
AKANTU_DEBUG_IN();
#ifdef AKANTU_USE_IOHELPER
// const SynchronizedArray<UInt> * nodal_filter =
// &(this->contact.getSlaves());
if (field_id == "mu_s") {
this->internalAddDumpFieldToDumper(
dumper_name, field_id,
std::make_unique<dumpers::NodalField<Real>>(this->mu_s.getArray()));
} else if (field_id == "mu_k") {
this->internalAddDumpFieldToDumper(
dumper_name, field_id,
std::make_unique<dumpers::NodalField<Real>>(this->mu_k.getArray()));
} else if (field_id == "d_c") {
this->internalAddDumpFieldToDumper(
dumper_name, field_id,
std::make_unique<dumpers::NodalField<Real>>(this->d_c.getArray()));
} else {
NTNFricLawCoulomb<Regularisation>::addDumpFieldToDumper(dumper_name,
field_id);
}
#endif
AKANTU_DEBUG_OUT();
}
} // namespace akantu

Event Timeline