Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F97196382
integrator_gauss_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jan 3, 08:40
Size
28 KB
Mime Type
text/x-c++
Expires
Sun, Jan 5, 08:40 (2 d)
Engine
blob
Format
Raw Data
Handle
23143514
Attached To
rAKA akantu
integrator_gauss_inline_impl.hh
View Options
/**
* @file integrator_gauss_inline_impl.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Tue Feb 15 2011
* @date last modification: Tue Feb 20 2018
*
* @brief inline function of gauss integrator
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "fe_engine.hh"
#include "mesh_iterators.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
namespace debug {
struct IntegratorGaussException : public Exception {};
} // namespace debug
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline void IntegratorGauss<kind, IntegrationOrderFunctor>::integrateOnElement(
const Array<Real> & f, Real * intf, UInt nb_degree_of_freedom,
const UInt elem, GhostType ghost_type) const {
Array<Real> & jac_loc = jacobians(type, ghost_type);
UInt nb_quadrature_points = ElementClass<type>::getNbQuadraturePoints();
AKANTU_DEBUG_ASSERT(f.getNbComponent() == nb_degree_of_freedom,
"The vector f do not have the good number of component.");
Real * f_val = f.storage() + elem * f.getNbComponent();
Real * jac_val = jac_loc.storage() + elem * nb_quadrature_points;
integrate(f_val, jac_val, intf, nb_degree_of_freedom, nb_quadrature_points);
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline Real IntegratorGauss<kind, IntegrationOrderFunctor>::integrate(
const Vector<Real> & in_f, UInt index, GhostType ghost_type) const {
const Array<Real> & jac_loc = jacobians(type, ghost_type);
UInt nb_quadrature_points =
GaussIntegrationElement<type>::getNbQuadraturePoints();
AKANTU_DEBUG_ASSERT(in_f.size() == nb_quadrature_points,
"The vector f do not have nb_quadrature_points entries.");
Real * jac_val = jac_loc.storage() + index * nb_quadrature_points;
Real intf;
integrate(in_f.storage(), jac_val, &intf, 1, nb_quadrature_points);
return intf;
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
inline void IntegratorGauss<kind, IntegrationOrderFunctor>::integrate(
Real * f, Real * jac, Real * inte, UInt nb_degree_of_freedom,
UInt nb_quadrature_points) const {
std::fill_n(inte, nb_degree_of_freedom, 0.);
Real * cjac = jac;
for (UInt q = 0; q < nb_quadrature_points; ++q) {
for (UInt dof = 0; dof < nb_degree_of_freedom; ++dof) {
inte[dof] += *f * *cjac;
++f;
}
++cjac;
}
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline const Matrix<Real> &
IntegratorGauss<kind, IntegrationOrderFunctor>::getIntegrationPoints(
GhostType ghost_type) const {
AKANTU_DEBUG_ASSERT(
quadrature_points.exists(type, ghost_type),
"Quadrature points for type "
<< quadrature_points.printType(type, ghost_type)
<< " have not been initialized."
<< " Did you use 'computeQuadraturePoints' function ?");
return quadrature_points(type, ghost_type);
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline UInt
IntegratorGauss<kind, IntegrationOrderFunctor>::getNbIntegrationPoints(
GhostType ghost_type) const {
AKANTU_DEBUG_ASSERT(
quadrature_points.exists(type, ghost_type),
"Quadrature points for type "
<< quadrature_points.printType(type, ghost_type)
<< " have not been initialized."
<< " Did you use 'computeQuadraturePoints' function ?");
return quadrature_points(type, ghost_type).cols();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type, UInt polynomial_degree>
inline Matrix<Real>
IntegratorGauss<kind, IntegrationOrderFunctor>::getIntegrationPoints() const {
return GaussIntegrationElement<type,
polynomial_degree>::getQuadraturePoints();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type, UInt polynomial_degree>
inline Vector<Real>
IntegratorGauss<kind, IntegrationOrderFunctor>::getIntegrationWeights() const {
return GaussIntegrationElement<type, polynomial_degree>::getWeights();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline void
IntegratorGauss<kind, IntegrationOrderFunctor>::computeQuadraturePoints(
GhostType ghost_type) {
Matrix<Real> & quads = quadrature_points(type, ghost_type);
const UInt polynomial_degree =
IntegrationOrderFunctor::template getOrder<type>();
quads =
GaussIntegrationElement<type, polynomial_degree>::getQuadraturePoints();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline void IntegratorGauss<kind, IntegrationOrderFunctor>::
computeJacobianOnQuadPointsByElement(const Matrix<Real> & node_coords,
const Matrix<Real> & quad,
Vector<Real> & jacobians) const {
// jacobian
ElementClass<type>::computeJacobian(quad, node_coords, jacobians);
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
IntegratorGauss<kind, IntegrationOrderFunctor>::IntegratorGauss(
const Mesh & mesh, UInt spatial_dimension, const ID & id,
const MemoryID & memory_id)
: Integrator(mesh, spatial_dimension, id, memory_id) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
void IntegratorGauss<kind, IntegrationOrderFunctor>::checkJacobians(
GhostType ghost_type) const {
AKANTU_DEBUG_IN();
UInt nb_quadrature_points = this->quadrature_points(type, ghost_type).cols();
UInt nb_element = mesh.getConnectivity(type, ghost_type).size();
Real * jacobians_val = jacobians(type, ghost_type).storage();
for (UInt i = 0; i < nb_element * nb_quadrature_points;
++i, ++jacobians_val) {
if (*jacobians_val < 0) {
AKANTU_CUSTOM_EXCEPTION_INFO(debug::IntegratorGaussException{},
"Negative jacobian computed,"
<< " possible problem in the element "
"node ordering (Quadrature Point "
<< i % nb_quadrature_points << ":"
<< i / nb_quadrature_points << ":"
<< type << ":" << ghost_type << ")");
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
void IntegratorGauss<kind, IntegrationOrderFunctor>::
computeJacobiansOnIntegrationPoints(
const Array<Real> & nodes, const Matrix<Real> & quad_points,
Array<Real> & jacobians, GhostType ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
UInt spatial_dimension = mesh.getSpatialDimension();
UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
UInt nb_quadrature_points = quad_points.cols();
UInt nb_element = mesh.getNbElement(type, ghost_type);
jacobians.resize(nb_element * nb_quadrature_points);
auto jacobians_it =
jacobians.begin_reinterpret(nb_quadrature_points, nb_element);
auto jacobians_begin = jacobians_it;
Array<Real> x_el(0, spatial_dimension * nb_nodes_per_element);
FEEngine::extractNodalToElementField(mesh, nodes, x_el, type, ghost_type,
filter_elements);
auto x_it = x_el.begin(spatial_dimension, nb_nodes_per_element);
nb_element = x_el.size();
// Matrix<Real> local_coord(spatial_dimension, nb_nodes_per_element);
for (UInt elem = 0; elem < nb_element; ++elem, ++x_it) {
const Matrix<Real> & x = *x_it;
if (filter_elements != empty_filter) {
jacobians_it = jacobians_begin + filter_elements(elem);
}
Vector<Real> & J = *jacobians_it;
computeJacobianOnQuadPointsByElement<type>(x, quad_points, J);
if (filter_elements == empty_filter) {
++jacobians_it;
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
#if defined(AKANTU_STRUCTURAL_MECHANICS)
template <>
template <ElementType type>
void IntegratorGauss<_ek_structural, DefaultIntegrationOrderFunctor>::
computeJacobiansOnIntegrationPoints(
const Array<Real> & nodes, const Matrix<Real> & quad_points,
Array<Real> & jacobians, GhostType ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
const UInt spatial_dimension = mesh.getSpatialDimension();
const UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
const UInt nb_quadrature_points = quad_points.cols();
const UInt nb_dofs = ElementClass<type>::getNbDegreeOfFreedom();
UInt nb_element = mesh.getNbElement(type, ghost_type);
jacobians.resize(nb_element * nb_quadrature_points);
auto jacobians_it =
jacobians.begin_reinterpret(nb_quadrature_points, nb_element);
auto jacobians_begin = jacobians_it;
Array<Real> x_el(0, spatial_dimension * nb_nodes_per_element);
FEEngine::extractNodalToElementField(mesh, nodes, x_el, type, ghost_type,
filter_elements);
auto x_it = x_el.begin(spatial_dimension, nb_nodes_per_element);
nb_element = x_el.size();
const bool has_extra_normal =
mesh.hasData<Real>("extra_normal", type, ghost_type);
Array<Real>::const_vector_iterator extra_normal;
Array<Real>::const_vector_iterator extra_normal_begin;
if (has_extra_normal) {
extra_normal = mesh.getData<Real>("extra_normal", type, ghost_type)
.begin(spatial_dimension);
extra_normal_begin = extra_normal;
}
// Matrix<Real> local_coord(spatial_dimension, nb_nodes_per_element);
for (UInt elem = 0; elem < nb_element; ++elem, ++x_it) {
if (filter_elements != empty_filter) {
jacobians_it = jacobians_begin + filter_elements(elem);
extra_normal = extra_normal_begin + filter_elements(elem);
}
const Matrix<Real> & X = *x_it;
Vector<Real> & J = *jacobians_it;
Matrix<Real> R(nb_dofs, nb_dofs);
if (has_extra_normal) {
ElementClass<type>::computeRotationMatrix(R, X, *extra_normal);
} else {
ElementClass<type>::computeRotationMatrix(R, X, Vector<Real>(X.rows()));
}
// Extracting relevant lines
auto x = (R.block(0, 0, spatial_dimension, spatial_dimension) * X)
.block(0, 0, ElementClass<type>::getNaturalSpaceDimension(),
ElementClass<type>::getNbNodesPerElement());
computeJacobianOnQuadPointsByElement<type>(x, quad_points, J);
if (filter_elements == empty_filter) {
++jacobians_it;
++extra_normal;
}
}
AKANTU_DEBUG_OUT();
}
#endif
/* -------------------------------------------------------------------------- */
#if defined(AKANTU_COHESIVE_ELEMENT)
template <>
template <ElementType type>
void IntegratorGauss<_ek_cohesive, DefaultIntegrationOrderFunctor>::
computeJacobiansOnIntegrationPoints(
const Array<Real> & nodes, const Matrix<Real> & quad_points,
Array<Real> & jacobians, GhostType ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
UInt spatial_dimension = mesh.getSpatialDimension();
UInt nb_nodes_per_element = Mesh::getNbNodesPerElement(type);
UInt nb_quadrature_points = quad_points.cols();
UInt nb_element = mesh.getNbElement(type, ghost_type);
jacobians.resize(nb_element * nb_quadrature_points);
auto jacobians_begin =
jacobians.begin_reinterpret(nb_quadrature_points, nb_element);
Array<Real> x_el(0, spatial_dimension * nb_nodes_per_element);
FEEngine::extractNodalToElementField(mesh, nodes, x_el, type, ghost_type,
filter_elements);
auto x_it = x_el.begin(spatial_dimension, nb_nodes_per_element);
UInt nb_nodes_per_subelement = nb_nodes_per_element / 2;
Matrix<Real> x(spatial_dimension, nb_nodes_per_subelement);
nb_element = x_el.size();
UInt l_el = 0;
auto compute = [&](const auto & el) {
Vector<Real> J(jacobians_begin[el]);
Matrix<Real> X(x_it[l_el]);
++l_el;
for (UInt n = 0; n < nb_nodes_per_subelement; ++n) {
Vector<Real>(x(n)) =
(Vector<Real>(X(n)) + Vector<Real>(X(n + nb_nodes_per_subelement))) /
2.;
}
if (type == _cohesive_1d_2) {
J(0) = 1;
} else {
this->computeJacobianOnQuadPointsByElement<type>(x, quad_points, J);
}
};
for_each_element(nb_element, filter_elements, compute);
AKANTU_DEBUG_OUT();
}
#endif
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
void IntegratorGauss<kind, IntegrationOrderFunctor>::
precomputeJacobiansOnQuadraturePoints(const Array<Real> & nodes,
GhostType ghost_type) {
AKANTU_DEBUG_IN();
Array<Real> & jacobians_tmp = jacobians.alloc(0, 1, type, ghost_type);
this->computeJacobiansOnIntegrationPoints<type>(
nodes, quadrature_points(type, ghost_type), jacobians_tmp, ghost_type);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type, UInt polynomial_degree>
void IntegratorGauss<kind, IntegrationOrderFunctor>::multiplyJacobiansByWeights(
Array<Real> & jacobians, const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
UInt nb_quadrature_points =
GaussIntegrationElement<type, polynomial_degree>::getNbQuadraturePoints();
Vector<Real> weights =
GaussIntegrationElement<type, polynomial_degree>::getWeights();
auto && view = make_view(jacobians, nb_quadrature_points);
if (filter_elements != empty_filter) {
auto J_it = view.begin();
for (auto el : filter_elements) {
Vector<Real> J(J_it[el]);
J *= weights;
}
} else {
for (auto & J : make_view(jacobians, nb_quadrature_points)) {
J *= weights;
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
void IntegratorGauss<kind, IntegrationOrderFunctor>::integrate(
const Array<Real> & in_f, Array<Real> & intf, UInt nb_degree_of_freedom,
const Array<Real> & jacobians, UInt nb_element) const {
AKANTU_DEBUG_IN();
intf.resize(nb_element);
if (nb_element == 0) {
return;
}
UInt nb_points = jacobians.size() / nb_element;
Array<Real>::const_matrix_iterator J_it;
Array<Real>::matrix_iterator inte_it;
Array<Real>::const_matrix_iterator f_it;
f_it = in_f.begin_reinterpret(nb_degree_of_freedom, nb_points, nb_element);
inte_it = intf.begin_reinterpret(nb_degree_of_freedom, 1, nb_element);
J_it = jacobians.begin_reinterpret(nb_points, 1, nb_element);
for (UInt el = 0; el < nb_element; ++el, ++J_it, ++f_it, ++inte_it) {
const Matrix<Real> & f = *f_it;
const Matrix<Real> & J = *J_it;
Matrix<Real> & inte_f = *inte_it;
inte_f.mul<false, false>(f, J);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
void IntegratorGauss<kind, IntegrationOrderFunctor>::integrate(
const Array<Real> & in_f, Array<Real> & intf, UInt nb_degree_of_freedom,
GhostType ghost_type, const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
const Array<Real> & jac_loc = jacobians(type, ghost_type);
if (filter_elements != empty_filter) {
UInt nb_element = filter_elements.size();
auto * filtered_J = new Array<Real>(0, jac_loc.getNbComponent());
FEEngine::filterElementalData(mesh, jac_loc, *filtered_J, type, ghost_type,
filter_elements);
this->integrate(in_f, intf, nb_degree_of_freedom, *filtered_J, nb_element);
delete filtered_J;
} else {
UInt nb_element = mesh.getNbElement(type, ghost_type);
this->integrate(in_f, intf, nb_degree_of_freedom, jac_loc, nb_element);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type, UInt polynomial_degree>
void IntegratorGauss<kind, IntegrationOrderFunctor>::integrate(
const Array<Real> & in_f, Array<Real> & intf, UInt nb_degree_of_freedom,
GhostType ghost_type) const {
AKANTU_DEBUG_IN();
Matrix<Real> quads = this->getIntegrationPoints<type, polynomial_degree>();
Array<Real> jacobians;
this->computeJacobiansOnIntegrationPoints<type>(mesh.getNodes(), quads,
jacobians, ghost_type);
this->multiplyJacobiansByWeights<type, polynomial_degree>(jacobians);
this->integrate(in_f, intf, nb_degree_of_freedom, jacobians,
mesh.getNbElement(type, ghost_type));
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type, UInt polynomial_degree>
Real IntegratorGauss<kind, IntegrationOrderFunctor>::integrate(
const Array<Real> & in_f, GhostType ghost_type) const {
AKANTU_DEBUG_IN();
Array<Real> intfv(0, 1);
integrate<type, polynomial_degree>(in_f, intfv, 1, ghost_type);
Real res = Math::reduce(intfv);
AKANTU_DEBUG_OUT();
return res;
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
Real IntegratorGauss<kind, IntegrationOrderFunctor>::integrate(
const Array<Real> & in_f, GhostType ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
Array<Real> intfv(0, 1);
integrate<type>(in_f, intfv, 1, ghost_type, filter_elements);
Real res = Math::reduce(intfv);
AKANTU_DEBUG_OUT();
return res;
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
void IntegratorGauss<kind, IntegrationOrderFunctor>::
integrateOnIntegrationPoints(const Array<Real> & in_f, Array<Real> & intf,
UInt nb_degree_of_freedom,
const Array<Real> & jacobians,
UInt nb_element) const {
AKANTU_DEBUG_IN();
UInt nb_points = jacobians.size() / nb_element;
intf.resize(nb_element * nb_points);
auto J_it = jacobians.begin();
auto f_it = in_f.begin(nb_degree_of_freedom);
auto inte_it = intf.begin(nb_degree_of_freedom);
for (UInt el = 0; el < nb_element; ++el, ++J_it, ++f_it, ++inte_it) {
const Real & J = *J_it;
const Vector<Real> & f = *f_it;
Vector<Real> & inte_f = *inte_it;
inte_f = f;
inte_f *= J;
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
void IntegratorGauss<kind, IntegrationOrderFunctor>::
integrateOnIntegrationPoints(const Array<Real> & in_f, Array<Real> & intf,
UInt nb_degree_of_freedom,
GhostType ghost_type,
const Array<UInt> & filter_elements) const {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT(jacobians.exists(type, ghost_type),
"No jacobians for the type "
<< jacobians.printType(type, ghost_type));
const Array<Real> & jac_loc = this->jacobians(type, ghost_type);
if (filter_elements != empty_filter) {
UInt nb_element = filter_elements.size();
auto * filtered_J = new Array<Real>(0, jac_loc.getNbComponent());
FEEngine::filterElementalData(mesh, jac_loc, *filtered_J, type, ghost_type,
filter_elements);
this->integrateOnIntegrationPoints(in_f, intf, nb_degree_of_freedom,
*filtered_J, nb_element);
} else {
UInt nb_element = mesh.getNbElement(type, ghost_type);
this->integrateOnIntegrationPoints(in_f, intf, nb_degree_of_freedom,
jac_loc, nb_element);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline void
IntegratorGauss<kind, IntegrationOrderFunctor>::onElementsAddedByType(
const Array<UInt> & elements, GhostType ghost_type) {
const auto & nodes = mesh.getNodes();
if (not quadrature_points.exists(type, ghost_type)) {
computeQuadraturePoints<type>(ghost_type);
}
if (not jacobians.exists(type, ghost_type)) {
jacobians.alloc(0, 1, type, ghost_type);
}
this->computeJacobiansOnIntegrationPoints(
nodes, quadrature_points(type, ghost_type), jacobians(type, ghost_type),
type, ghost_type, elements);
constexpr UInt polynomial_degree =
IntegrationOrderFunctor::template getOrder<type>();
multiplyJacobiansByWeights<type, polynomial_degree>(
this->jacobians(type, ghost_type), elements);
}
/* -------------------------------------------------------------------------- */
namespace integrator {
namespace details {
template <ElementKind kind> struct IntegratorOnElementsAddedHelper {};
#define ON_ELEMENT_ADDED(type) \
integrator.template onElementsAddedByType<type>(elements, ghost_type);
#define AKANTU_SPECIALIZE_ON_ELEMENT_ADDED_HELPER(kind) \
template <> struct IntegratorOnElementsAddedHelper<kind> { \
template <class I> \
static void call(I & integrator, const Array<UInt> & elements, \
ElementType type, GhostType ghost_type) { \
AKANTU_BOOST_KIND_ELEMENT_SWITCH(ON_ELEMENT_ADDED, kind); \
} \
};
AKANTU_BOOST_ALL_KIND(AKANTU_SPECIALIZE_ON_ELEMENT_ADDED_HELPER)
#undef AKANTU_SPECIALIZE_ON_ELEMENT_ADDED_HELPER
#undef ON_ELEMENT_ADDED
} // namespace details
} // namespace integrator
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
void IntegratorGauss<kind, IntegrationOrderFunctor>::onElementsAdded(
const Array<Element> & new_elements) {
for (auto elements_range : MeshElementsByTypes(new_elements)) {
auto type = elements_range.getType();
auto ghost_type = elements_range.getGhostType();
if (mesh.getSpatialDimension(type) != _spatial_dimension) {
continue;
}
if (mesh.getKind(type) != kind) {
continue;
}
integrator::details::IntegratorOnElementsAddedHelper<kind>::call(
*this, elements_range.getElements(), type, ghost_type);
}
}
/* -------------------------------------------------------------------------- */
template <ElementKind kind, class IntegrationOrderFunctor>
template <ElementType type>
inline void IntegratorGauss<kind, IntegrationOrderFunctor>::initIntegrator(
const Array<Real> & nodes, GhostType ghost_type) {
computeQuadraturePoints<type>(ghost_type);
precomputeJacobiansOnQuadraturePoints<type>(nodes, ghost_type);
checkJacobians<type>(ghost_type);
constexpr UInt polynomial_degree =
IntegrationOrderFunctor::template getOrder<type>();
multiplyJacobiansByWeights<type, polynomial_degree>(
this->jacobians(type, ghost_type));
}
namespace integrator {
namespace details {
template <ElementKind kind> struct GaussIntegratorInitHelper {};
#define INIT_INTEGRATOR(type) \
_int.template initIntegrator<type>(nodes, ghost_type)
#define AKANTU_GAUSS_INTERGRATOR_INIT_HELPER(kind) \
template <> struct GaussIntegratorInitHelper<kind> { \
template <ElementKind k, class IOF> \
static void call(IntegratorGauss<k, IOF> & _int, \
const Array<Real> & nodes, ElementType type, \
GhostType ghost_type) { \
AKANTU_BOOST_KIND_ELEMENT_SWITCH(INIT_INTEGRATOR, kind); \
} \
};
AKANTU_BOOST_ALL_KIND(AKANTU_GAUSS_INTERGRATOR_INIT_HELPER)
#undef AKANTU_GAUSS_INTERGRATOR_INIT_HELPER
#undef INIT_INTEGRATOR
} // namespace details
} // namespace integrator
template <ElementKind kind, class IntegrationOrderFunctor>
inline void IntegratorGauss<kind, IntegrationOrderFunctor>::initIntegrator(
const Array<Real> & nodes, ElementType type, GhostType ghost_type) {
integrator::details::GaussIntegratorInitHelper<kind>::call(*this, nodes, type,
ghost_type);
}
namespace integrator {
namespace details {
template <ElementKind kind> struct GaussIntegratorComputeJacobiansHelper {};
#define AKANTU_COMPUTE_JACOBIANS(type) \
_int.template computeJacobiansOnIntegrationPoints<type>( \
nodes, quad_points, jacobians, ghost_type, filter_elements);
#define AKANTU_GAUSS_INTERGRATOR_COMPUTE_JACOBIANS(kind) \
template <> struct GaussIntegratorComputeJacobiansHelper<kind> { \
template <ElementKind k, class IOF> \
static void \
call(const IntegratorGauss<k, IOF> & _int, const Array<Real> & nodes, \
const Matrix<Real> & quad_points, Array<Real> & jacobians, \
ElementType type, GhostType ghost_type, \
const Array<UInt> & filter_elements) { \
AKANTU_BOOST_KIND_ELEMENT_SWITCH(AKANTU_COMPUTE_JACOBIANS, kind); \
} \
};
AKANTU_BOOST_ALL_KIND(AKANTU_GAUSS_INTERGRATOR_COMPUTE_JACOBIANS)
#undef AKANTU_GAUSS_INTERGRATOR_COMPUTE_JACOBIANS
#undef AKANTU_COMPUTE_JACOBIANS
} // namespace details
} // namespace integrator
template <ElementKind kind, class IntegrationOrderFunctor>
void IntegratorGauss<kind, IntegrationOrderFunctor>::
computeJacobiansOnIntegrationPoints(
const Array<Real> & nodes, const Matrix<Real> & quad_points,
Array<Real> & jacobians, ElementType type, GhostType ghost_type,
const Array<UInt> & filter_elements) const {
integrator::details::GaussIntegratorComputeJacobiansHelper<kind>::call(
*this, nodes, quad_points, jacobians, type, ghost_type, filter_elements);
}
} // namespace akantu
Event Timeline
Log In to Comment