Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90650487
shape_lagrange_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 3, 14:15
Size
21 KB
Mime Type
text/x-c++
Expires
Tue, Nov 5, 14:15 (2 d)
Engine
blob
Format
Raw Data
Handle
22098158
Attached To
rAKA akantu
shape_lagrange_inline_impl.hh
View Options
/**
* @file shape_lagrange_inline_impl.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Mohit Pundir <mohit.pundir@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Wed Oct 27 2010
* @date last modification: Fri May 14 2021
*
* @brief ShapeLagrange inline implementation
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_iterators.hh"
#include "aka_voigthelper.hh"
#include "fe_engine.hh"
//#include "shape_lagrange.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_SHAPE_LAGRANGE_INLINE_IMPL_HH_
#define AKANTU_SHAPE_LAGRANGE_INLINE_IMPL_HH_
namespace
akantu
{
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
typename
D
>
inline
void
ShapeLagrange
<
kind
>::
initShapeFunctions
(
const
Array
<
Real
>
&
/*nodes*/
,
const
Eigen
::
MatrixBase
<
D
>
&
/*integration_points*/
,
ElementType
/*type*/
,
GhostType
/*ghost_type*/
)
{}
/* -------------------------------------------------------------------------- */
template
<>
template
<
typename
D
>
inline
void
ShapeLagrange
<
_ek_regular
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Eigen
::
MatrixBase
<
D
>
&
integration_points
,
ElementType
type
,
GhostType
ghost_type
)
{
tuple_dispatch
<
ElementTypes_t
<
_ek_regular
>>
(
[
&
](
auto
&&
enum_type
)
{
constexpr
ElementType
type
=
std
::
decay_t
<
decltype
(
enum_type
)
>::
value
;
this
->
setIntegrationPointsByType
<
type
>
(
integration_points
,
ghost_type
);
this
->
precomputeShapesOnIntegrationPoints
<
type
>
(
nodes
,
ghost_type
);
if
(
ElementClass
<
type
>::
getNaturalSpaceDimension
()
==
mesh
.
getSpatialDimension
())
{
this
->
precomputeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
ghost_type
);
}
},
type
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
typename
D1
,
typename
D2
>
inline
void
ShapeLagrange
<
kind
>::
computeShapeDerivativesOnCPointsByElement
(
const
Eigen
::
MatrixBase
<
D1
>
&
node_coords
,
const
Eigen
::
MatrixBase
<
D2
>
&
natural_coords
,
Tensor3Base
<
Real
>
&
shapesd
)
const
{
AKANTU_DEBUG_IN
();
// compute dnds
Tensor3
<
Real
>
dnds
(
node_coords
.
rows
(),
node_coords
.
cols
(),
natural_coords
.
cols
());
ElementClass
<
type
>::
computeDNDS
(
natural_coords
,
dnds
);
// compute jacobian
Tensor3
<
Real
>
J
(
node_coords
.
rows
(),
natural_coords
.
rows
(),
natural_coords
.
cols
());
ElementClass
<
type
>::
computeJMat
(
dnds
,
node_coords
,
J
);
// compute dndx
ElementClass
<
type
>::
computeShapeDerivatives
(
J
,
dnds
,
shapesd
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
typename
D1
,
typename
D2
>
void
ShapeLagrange
<
kind
>::
inverseMap
(
const
Eigen
::
MatrixBase
<
D1
>
&
real_coords
,
Int
elem
,
const
Eigen
::
MatrixBase
<
D2
>
&
natural_coords_
,
GhostType
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
// as advised by the Eigen developers even though this is a UB
auto
&
natural_coords
=
const_cast
<
Eigen
::
MatrixBase
<
D2
>
&>
(
natural_coords_
);
auto
nodes_coord
=
mesh
.
extractNodalValuesFromElement
(
mesh
.
getNodes
(),
Element
{
type
,
elem
,
ghost_type
});
ElementClass
<
type
>::
inverseMap
(
real_coords
,
nodes_coord
,
natural_coords
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
typename
D
,
std
::
enable_if_t
<
aka
::
is_vector_v
<
D
>>
*>
bool
ShapeLagrange
<
kind
>::
contains
(
const
Eigen
::
MatrixBase
<
D
>
&
real_coords
,
Idx
elem
,
GhostType
ghost_type
)
const
{
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
Vector
<
Real
>
natural_coords
(
spatial_dimension
);
inverseMap
<
type
>
(
real_coords
,
elem
,
natural_coords
,
ghost_type
);
return
ElementClass
<
type
>::
contains
(
natural_coords
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
typename
D1
,
typename
D2
,
typename
D3
,
std
::
enable_if_t
<
aka
::
are_vectors
<
D1
,
D3
>::
value
>
*>
void
ShapeLagrange
<
kind
>::
interpolate
(
const
Eigen
::
MatrixBase
<
D1
>
&
real_coords
,
Idx
elem
,
const
Eigen
::
MatrixBase
<
D2
>
&
nodal_values
,
Eigen
::
MatrixBase
<
D3
>
&
interpolated
,
GhostType
ghost_type
)
const
{
constexpr
auto
nb_shapes
=
ElementClass
<
type
>::
getShapeSize
();
Vector
<
Real
,
nb_shapes
>
shapes
;
computeShapes
<
type
>
(
real_coords
,
elem
,
shapes
,
ghost_type
);
ElementClass
<
type
>::
interpolate
(
nodal_values
,
shapes
,
interpolated
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
typename
D1
,
typename
D2
>
void
ShapeLagrange
<
kind
>::
computeShapes
(
const
Eigen
::
MatrixBase
<
D1
>
&
real_coords
,
Idx
elem
,
Eigen
::
MatrixBase
<
D2
>
&
shapes
,
GhostType
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
Vector
<
Real
>
natural_coords
(
spatial_dimension
);
inverseMap
<
type
>
(
real_coords
,
elem
,
natural_coords
,
ghost_type
);
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
shapes
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
typename
D
>
void
ShapeLagrange
<
kind
>::
computeShapeDerivatives
(
const
Eigen
::
MatrixBase
<
D
>
&
real_coords
,
Idx
elem
,
Tensor3Base
<
Real
>
&
shapesd
,
GhostType
ghost_type
)
const
{
AKANTU_DEBUG_IN
();
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
auto
nb_points
=
real_coords
.
cols
();
#if !defined(AKANTU_NDEBUG)
const
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
AKANTU_DEBUG_ASSERT
(
mesh
.
getSpatialDimension
()
==
shapesd
.
size
(
0
)
&&
nb_nodes_per_element
==
shapesd
.
size
(
1
),
"Shape size doesn't match"
);
AKANTU_DEBUG_ASSERT
(
nb_points
==
shapesd
.
size
(
2
),
"Number of points doesn't match shapes size"
);
#endif
Matrix
<
Real
>
natural_coords
(
spatial_dimension
,
nb_points
);
// Creates the matrix of natural coordinates
for
(
Int
i
=
0
;
i
<
nb_points
;
i
++
)
{
inverseMap
<
type
>
(
real_coords
(
i
),
elem
,
natural_coords
(
i
),
ghost_type
);
}
auto
nodes_coord
=
mesh
.
extractNodalValuesFromElement
(
mesh
.
getNodes
(),
Element
{
type
,
elem
,
ghost_type
});
computeShapeDerivativesOnCPointsByElement
<
type
>
(
nodes_coord
,
natural_coords
,
shapesd
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
ShapeLagrange
<
kind
>::
ShapeLagrange
(
const
Mesh
&
mesh
,
Int
spatial_dimension
,
const
ID
&
id
)
:
ShapeLagrangeBase
(
mesh
,
spatial_dimension
,
kind
,
id
)
{}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
typename
D
>
void
ShapeLagrange
<
kind
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Eigen
::
MatrixBase
<
D
>
&
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
auto
nb_points
=
integration_points
.
cols
();
auto
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
size
();
auto
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
AKANTU_DEBUG_ASSERT
(
shape_derivatives
.
getNbComponent
()
==
size_of_shapesd
,
"The shapes_derivatives array does not have the correct "
<<
"number of component"
);
shape_derivatives
.
resize
(
nb_element
*
nb_points
);
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
,
filter_elements
);
auto
*
shapesd_val
=
shape_derivatives
.
data
();
auto
x_it
=
x_el
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
}
for
(
Int
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
x_it
)
{
if
(
filter_elements
!=
empty_filter
)
{
shapesd_val
=
shape_derivatives
.
data
()
+
filter_elements
(
elem
)
*
size_of_shapesd
*
nb_points
;
}
auto
&
X
=
*
x_it
;
Tensor3Proxy
<
Real
>
B
(
shapesd_val
,
spatial_dimension
,
nb_nodes_per_element
,
nb_points
);
computeShapeDerivativesOnCPointsByElement
<
type
>
(
X
,
integration_points
,
B
);
if
(
filter_elements
==
empty_filter
)
{
shapesd_val
+=
size_of_shapesd
*
nb_points
;
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
void
ShapeLagrange
<
kind
>::
computeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
Ref
<
const
MatrixXr
>
integration_points
,
Array
<
Real
>
&
shape_derivatives
,
ElementType
type
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
tuple_dispatch
<
ElementTypes_t
<
_ek_regular
>>
(
[
&
](
auto
&&
enum_type
)
{
constexpr
ElementType
type
=
aka
::
decay_v
<
decltype
(
enum_type
)
>
;
this
->
computeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
integration_points
,
shape_derivatives
,
ghost_type
,
filter_elements
);
},
type
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
precomputeShapesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
auto
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
Array
<
Real
>
&
shapes_tmp
=
shapes
.
alloc
(
0
,
size_of_shapes
,
itp_type
,
ghost_type
);
this
->
computeShapesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
precomputeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
auto
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
Array
<
Real
>
&
shapes_derivatives_tmp
=
shapes_derivatives
.
alloc
(
0
,
size_of_shapesd
,
itp_type
,
ghost_type
);
this
->
computeShapeDerivativesOnIntegrationPoints
<
type
>
(
nodes
,
natural_coords
,
shapes_derivatives_tmp
,
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
Int
nb_degree_of_freedom
,
const
Array
<
Real
>
&
shapes
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
this
->
interpolateElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
out_uq
,
ghost_type
,
shapes
,
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
Int
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
shapes
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
shapes
.
printType
(
itp_type
,
ghost_type
));
this
->
interpolateOnIntegrationPoints
<
type
>
(
in_u
,
out_uq
,
nb_degree_of_freedom
,
shapes
(
itp_type
,
ghost_type
),
ghost_type
,
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
gradientOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_nablauq
,
Int
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
),
"No shapes derivatives for the type "
<<
shapes_derivatives
.
printType
(
itp_type
,
ghost_type
));
auto
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
in_u
,
u_el
,
type
,
ghost_type
,
filter_elements
);
this
->
gradientElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
out_nablauq
,
ghost_type
,
shapes_derivatives
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeBtD
(
const
Array
<
Real
>
&
Ds
,
Array
<
Real
>
&
BtDs
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
const
auto
&
shapes_derivatives
=
this
->
shapes_derivatives
(
itp_type
,
ghost_type
);
auto
spatial_dimension
=
mesh
.
getSpatialDimension
();
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
Array
<
Real
>
shapes_derivatives_filtered
(
0
,
shapes_derivatives
.
getNbComponent
());
auto
view
=
make_const_view
(
shapes_derivatives
,
spatial_dimension
,
nb_nodes_per_element
);
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes_derivatives
,
shapes_derivatives_filtered
,
type
,
ghost_type
,
filter_elements
);
view
=
make_const_view
(
shapes_derivatives_filtered
,
spatial_dimension
,
nb_nodes_per_element
);
}
for
(
auto
&&
values
:
zip
(
view
,
make_view
(
Ds
,
Ds
.
getNbComponent
()
/
spatial_dimension
,
spatial_dimension
),
make_view
(
BtDs
,
BtDs
.
getNbComponent
()
/
nb_nodes_per_element
,
nb_nodes_per_element
)))
{
const
auto
&
B
=
std
::
get
<
0
>
(
values
);
const
auto
&
D
=
std
::
get
<
1
>
(
values
);
auto
&
Bt_D
=
std
::
get
<
2
>
(
values
);
// transposed due to the storage layout of B
Bt_D
.
noalias
()
=
D
*
B
;
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
,
std
::
enable_if_t
<
ElementClass
<
type
>::
getNaturalSpaceDimension
()
!=
0
>
*>
void
ShapeLagrange
<
kind
>::
computeBtDB
(
const
Array
<
Real
>
&
Ds
,
Array
<
Real
>
&
BtDBs
,
Int
order_d
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
const
auto
&
shapes_derivatives
=
this
->
shapes_derivatives
(
itp_type
,
ghost_type
);
constexpr
auto
dim
=
ElementClass
<
type
>::
getSpatialDimension
();
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
Array
<
Real
>
shapes_derivatives_filtered
(
0
,
shapes_derivatives
.
getNbComponent
());
auto
&&
view
=
make_const_view
(
shapes_derivatives
,
dim
,
nb_nodes_per_element
);
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes_derivatives
,
shapes_derivatives_filtered
,
type
,
ghost_type
,
filter_elements
);
view
=
make_const_view
(
shapes_derivatives_filtered
,
dim
,
nb_nodes_per_element
);
}
if
(
order_d
==
4
)
{
auto
tangent_size
=
VoigtHelper
<
dim
>::
size
;
Matrix
<
Real
>
B
(
tangent_size
,
dim
*
nb_nodes_per_element
);
for
(
auto
&&
values
:
zip
(
view
,
make_view
(
Ds
,
tangent_size
,
tangent_size
),
make_view
(
BtDBs
,
dim
*
nb_nodes_per_element
,
dim
*
nb_nodes_per_element
)))
{
const
auto
&
Bfull
=
std
::
get
<
0
>
(
values
);
const
auto
&
D
=
std
::
get
<
1
>
(
values
);
auto
&
Bt_D_B
=
std
::
get
<
2
>
(
values
);
VoigtHelper
<
dim
>::
transferBMatrixToSymVoigtBMatrix
(
Bfull
,
B
,
nb_nodes_per_element
);
Bt_D_B
.
noalias
()
=
B
.
transpose
()
*
D
*
B
;
}
}
else
if
(
order_d
==
2
)
{
for
(
auto
&&
values
:
zip
(
view
,
make_view
(
Ds
,
dim
,
dim
),
make_view
(
BtDBs
,
nb_nodes_per_element
,
nb_nodes_per_element
)))
{
const
auto
&
B
=
std
::
get
<
0
>
(
values
);
const
auto
&
D
=
std
::
get
<
1
>
(
values
);
auto
&
Bt_D_B
=
std
::
get
<
2
>
(
values
);
Bt_D_B
.
noalias
()
=
B
.
transpose
()
*
D
*
B
;
}
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeNtbN
(
const
Array
<
Real
>
&
bs
,
Array
<
Real
>
&
NtbNs
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
auto
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
auto
nb_degree_of_freedom
=
bs
.
getNbComponent
();
auto
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
type
);
Array
<
Real
>
shapes_filtered
(
0
,
size_of_shapes
);
auto
&&
view
=
make_const_view
(
shapes
(
itp_type
,
ghost_type
),
1
,
size_of_shapes
);
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes
(
itp_type
,
ghost_type
),
shapes_filtered
,
type
,
ghost_type
,
filter_elements
);
view
=
make_const_view
(
shapes_filtered
,
1
,
size_of_shapes
);
}
Matrix
<
Real
>
Nt_b
(
nb_nodes_per_element
,
nb_degree_of_freedom
);
for
(
auto
&&
values
:
zip
(
view
,
make_view
(
bs
,
nb_degree_of_freedom
,
1
),
make_view
(
NtbNs
,
nb_nodes_per_element
,
nb_nodes_per_element
)))
{
const
auto
&
N
=
std
::
get
<
0
>
(
values
);
const
auto
&
b
=
std
::
get
<
1
>
(
values
);
auto
&
Nt_b_N
=
std
::
get
<
2
>
(
values
);
Nt_b_N
.
noalias
()
=
N
.
transpose
()
*
b
*
N
;
}
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLagrange
<
kind
>::
computeNtb
(
const
Array
<
Real
>
&
bs
,
Array
<
Real
>
&
Ntbs
,
GhostType
ghost_type
,
const
Array
<
Idx
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
Ntbs
.
resize
(
bs
.
size
());
auto
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
auto
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
auto
nb_degree_of_freedom
=
bs
.
getNbComponent
();
Array
<
Real
>
shapes_filtered
(
0
,
size_of_shapes
);
auto
&&
view
=
make_const_view
(
shapes
(
itp_type
,
ghost_type
),
1
,
size_of_shapes
);
if
(
filter_elements
!=
empty_filter
)
{
FEEngine
::
filterElementalData
(
this
->
mesh
,
shapes
(
itp_type
,
ghost_type
),
shapes_filtered
,
type
,
ghost_type
,
filter_elements
);
view
=
make_const_view
(
shapes_filtered
,
1
,
size_of_shapes
);
}
for
(
auto
&&
values
:
zip
(
make_view
(
bs
,
nb_degree_of_freedom
,
1
),
view
,
make_view
(
Ntbs
,
nb_degree_of_freedom
,
size_of_shapes
)))
{
const
auto
&
b
=
std
::
get
<
0
>
(
values
);
const
auto
&
N
=
std
::
get
<
1
>
(
values
);
auto
&
Ntb
=
std
::
get
<
2
>
(
values
);
Ntb
.
noalias
()
=
b
*
N
;
}
AKANTU_DEBUG_OUT
();
}
}
// namespace akantu
#endif
/* AKANTU_SHAPE_LAGRANGE_INLINE_IMPL_HH_ */
Event Timeline
Log In to Comment