Page MenuHomec4science

data_accessor.cc
No OneTemporary

File Metadata

Created
Tue, Nov 5, 23:32

data_accessor.cc

/**
* @file data_accessor.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Sun Oct 19 2014
*
* @brief data accessors constructor functions
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "data_accessor.hh"
#include "fe_engine.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
/* -------------------------------------------------------------------------- */
template <typename T, bool pack_helper>
void DataAccessor<Element>::packUnpackNodalDataHelper(
Array<T> & data, CommunicationBuffer & buffer,
const Array<Element> & elements, const Mesh & mesh) {
UInt nb_component = data.getNbComponent();
UInt nb_nodes_per_element = 0;
ElementType current_element_type = _not_defined;
GhostType current_ghost_type = _casper;
UInt * conn = NULL;
Array<Element>::const_iterator<Element> it = elements.begin();
Array<Element>::const_iterator<Element> end = elements.end();
for (; it != end; ++it) {
const Element & el = *it;
if (el.type != current_element_type ||
el.ghost_type != current_ghost_type) {
current_element_type = el.type;
current_ghost_type = el.ghost_type;
conn = mesh.getConnectivity(el.type, el.ghost_type).storage();
nb_nodes_per_element = Mesh::getNbNodesPerElement(el.type);
}
UInt el_offset = el.element * nb_nodes_per_element;
for (UInt n = 0; n < nb_nodes_per_element; ++n) {
UInt offset_conn = conn[el_offset + n];
Vector<T> data_vect(data.storage() + offset_conn * nb_component,
nb_component);
if (pack_helper)
buffer << data_vect;
else
buffer >> data_vect;
}
}
}
/* ------------------------------------------------------------------------ */
template <typename T, bool pack_helper>
void DataAccessor<Element>::packUnpackElementalDataHelper(
ElementTypeMapArray<T> & data_to_pack, CommunicationBuffer & buffer,
const Array<Element> & element, bool per_quadrature_point_data,
const FEEngine & fem) {
ElementType current_element_type = _not_defined;
GhostType current_ghost_type = _casper;
UInt nb_quad_per_elem = 0;
UInt nb_component = 0;
Array<T> * vect = NULL;
Array<Element>::const_iterator<Element> it = element.begin();
Array<Element>::const_iterator<Element> end = element.end();
for (; it != end; ++it) {
const Element & el = *it;
if (el.type != current_element_type ||
el.ghost_type != current_ghost_type) {
current_element_type = el.type;
current_ghost_type = el.ghost_type;
vect = &data_to_pack(el.type, el.ghost_type);
if (per_quadrature_point_data)
nb_quad_per_elem = fem.getNbIntegrationPoints(el.type, el.ghost_type);
else
nb_quad_per_elem = 1;
nb_component = vect->getNbComponent();
}
Vector<T> data(vect->storage() +
el.element * nb_component * nb_quad_per_elem,
nb_component * nb_quad_per_elem);
if (pack_helper)
buffer << data;
else
buffer >> data;
}
}
/* -------------------------------------------------------------------------- */
template <typename T, bool pack_helper>
void DataAccessor<UInt>::packUnpackDOFDataHelper(Array<T> & data,
CommunicationBuffer & buffer,
const Array<UInt> & dofs) {
Array<UInt>::const_scalar_iterator it_dof = dofs.begin();
Array<UInt>::const_scalar_iterator end_dof = dofs.end();
T * data_ptr = data.storage();
for (; it_dof != end_dof; ++it_dof) {
if (pack_helper)
buffer << data_ptr[*it_dof];
else
buffer >> data_ptr[*it_dof];
}
}
/* -------------------------------------------------------------------------- */
#define DECLARE_HELPERS(T) \
template void DataAccessor<Element>::packUnpackNodalDataHelper<T, false>( \
Array<T> & data, CommunicationBuffer & buffer, \
const Array<Element> & elements, const Mesh & mesh); \
template void DataAccessor<Element>::packUnpackNodalDataHelper<T, true>( \
Array<T> & data, CommunicationBuffer & buffer, \
const Array<Element> & elements, const Mesh & mesh); \
template void \
DataAccessor<Element>::packUnpackElementalDataHelper<T, false>( \
ElementTypeMapArray<T> & data_to_pack, CommunicationBuffer & buffer, \
const Array<Element> & element, bool per_quadrature_point_data, \
const FEEngine & fem); \
template void DataAccessor<Element>::packUnpackElementalDataHelper<T, true>( \
ElementTypeMapArray<T> & data_to_pack, CommunicationBuffer & buffer, \
const Array<Element> & element, bool per_quadrature_point_data, \
const FEEngine & fem); \
template void DataAccessor<UInt>::packUnpackDOFDataHelper<T, true>( \
Array<T> & data, CommunicationBuffer & buffer, \
const Array<UInt> & dofs); \
template void DataAccessor<UInt>::packUnpackDOFDataHelper<T, false>( \
Array<T> & data, CommunicationBuffer & buffer, const Array<UInt> & dofs)
/* -------------------------------------------------------------------------- */
DECLARE_HELPERS(Real);
DECLARE_HELPERS(UInt);
DECLARE_HELPERS(bool);
/* -------------------------------------------------------------------------- */
} // akantu

Event Timeline