Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91045006
dof_manager_default.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 06:43
Size
36 KB
Mime Type
text/x-c++
Expires
Sat, Nov 9, 06:43 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22178377
Attached To
rAKA akantu
dof_manager_default.cc
View Options
/**
* @file dof_manager_default.cc
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Tue Aug 18 2015
* @date last modification: Thu Feb 08 2018
*
* @brief Implementation of the default DOFManager
*
* @section LICENSE
*
* Copyright (©) 2015-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "dof_manager_default.hh"
#include "communicator.hh"
#include "dof_synchronizer.hh"
#include "element_group.hh"
#include "node_synchronizer.hh"
#include "non_linear_solver_default.hh"
#include "periodic_node_synchronizer.hh"
#include "sparse_matrix_aij.hh"
#include "terms_to_assemble.hh"
#include "time_step_solver_default.hh"
/* -------------------------------------------------------------------------- */
#include <algorithm>
#include <memory>
#include <numeric>
#include <unordered_map>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
inline
void
DOFManagerDefault
::
addSymmetricElementalMatrixToSymmetric
(
SparseMatrixAIJ
&
matrix
,
const
Matrix
<
Real
>
&
elementary_mat
,
const
Vector
<
Int
>
&
equation_numbers
,
UInt
max_size
)
{
for
(
UInt
i
=
0
;
i
<
elementary_mat
.
rows
();
++
i
)
{
UInt
c_irn
=
equation_numbers
(
i
);
if
(
c_irn
<
max_size
)
{
for
(
UInt
j
=
i
;
j
<
elementary_mat
.
cols
();
++
j
)
{
UInt
c_jcn
=
equation_numbers
(
j
);
if
(
c_jcn
<
max_size
)
{
matrix
(
c_irn
,
c_jcn
)
+=
elementary_mat
(
i
,
j
);
}
}
}
}
}
/* -------------------------------------------------------------------------- */
inline
void
DOFManagerDefault
::
addUnsymmetricElementalMatrixToSymmetric
(
SparseMatrixAIJ
&
matrix
,
const
Matrix
<
Real
>
&
elementary_mat
,
const
Vector
<
Int
>
&
equation_numbers
,
UInt
max_size
)
{
for
(
UInt
i
=
0
;
i
<
elementary_mat
.
rows
();
++
i
)
{
UInt
c_irn
=
equation_numbers
(
i
);
if
(
c_irn
<
max_size
)
{
for
(
UInt
j
=
0
;
j
<
elementary_mat
.
cols
();
++
j
)
{
UInt
c_jcn
=
equation_numbers
(
j
);
if
(
c_jcn
<
max_size
)
{
if
(
c_jcn
>=
c_irn
)
{
matrix
(
c_irn
,
c_jcn
)
+=
elementary_mat
(
i
,
j
);
}
}
}
}
}
}
/* -------------------------------------------------------------------------- */
inline
void
DOFManagerDefault
::
addElementalMatrixToUnsymmetric
(
SparseMatrixAIJ
&
matrix
,
const
Matrix
<
Real
>
&
elementary_mat
,
const
Vector
<
Int
>
&
equation_numbers
,
UInt
max_size
)
{
for
(
UInt
i
=
0
;
i
<
elementary_mat
.
rows
();
++
i
)
{
UInt
c_irn
=
equation_numbers
(
i
);
if
(
c_irn
<
max_size
)
{
for
(
UInt
j
=
0
;
j
<
elementary_mat
.
cols
();
++
j
)
{
UInt
c_jcn
=
equation_numbers
(
j
);
if
(
c_jcn
<
max_size
)
{
matrix
(
c_irn
,
c_jcn
)
+=
elementary_mat
(
i
,
j
);
}
}
}
}
}
/* -------------------------------------------------------------------------- */
DOFManagerDefault
::
DOFManagerDefault
(
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
DOFManager
(
id
,
memory_id
),
residual
(
0
,
1
,
std
::
string
(
id
+
":residual"
)),
global_residual
(
nullptr
),
global_solution
(
0
,
1
,
std
::
string
(
id
+
":global_solution"
)),
global_blocked_dofs
(
0
,
1
,
std
::
string
(
id
+
":global_blocked_dofs"
)),
previous_global_blocked_dofs
(
0
,
1
,
std
::
string
(
id
+
":previous_global_blocked_dofs"
)),
dofs_flag
(
0
,
1
,
std
::
string
(
id
+
":dofs_type"
)),
data_cache
(
0
,
1
,
std
::
string
(
id
+
":data_cache_array"
)),
global_equation_number
(
0
,
1
,
"global_equation_number"
),
synchronizer
(
nullptr
)
{}
/* -------------------------------------------------------------------------- */
DOFManagerDefault
::
DOFManagerDefault
(
Mesh
&
mesh
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
DOFManager
(
mesh
,
id
,
memory_id
),
residual
(
0
,
1
,
std
::
string
(
id
+
":residual"
)),
global_residual
(
nullptr
),
global_solution
(
0
,
1
,
std
::
string
(
id
+
":global_solution"
)),
global_blocked_dofs
(
0
,
1
,
std
::
string
(
id
+
":global_blocked_dofs"
)),
previous_global_blocked_dofs
(
0
,
1
,
std
::
string
(
id
+
":previous_global_blocked_dofs"
)),
dofs_flag
(
0
,
1
,
std
::
string
(
id
+
":dofs_type"
)),
data_cache
(
0
,
1
,
std
::
string
(
id
+
":data_cache_array"
)),
global_equation_number
(
0
,
1
,
"global_equation_number"
),
first_global_dof_id
(
0
),
synchronizer
(
nullptr
)
{
if
(
this
->
mesh
->
isDistributed
())
this
->
synchronizer
=
std
::
make_unique
<
DOFSynchronizer
>
(
*
this
,
this
->
id
+
":dof_synchronizer"
,
this
->
memory_id
);
}
/* -------------------------------------------------------------------------- */
DOFManagerDefault
::~
DOFManagerDefault
()
=
default
;
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
DOFManagerDefault
::
makeConsistentForPeriodicity
(
const
ID
&
dof_id
,
Array
<
T
>
&
array
)
{
auto
&
dof_data
=
this
->
getDOFDataTyped
<
DOFDataDefault
>
(
dof_id
);
if
(
dof_data
.
support_type
!=
_dst_nodal
)
return
;
if
(
not
mesh
->
isPeriodic
())
return
;
this
->
mesh
->
getPeriodicNodeSynchronizer
()
.
reduceSynchronizeWithPBCSlaves
<
AddOperation
>
(
array
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
DOFManagerDefault
::
assembleToGlobalArray
(
const
ID
&
dof_id
,
const
Array
<
T
>
&
array_to_assemble
,
Array
<
T
>
&
global_array
,
T
scale_factor
)
{
AKANTU_DEBUG_IN
();
auto
&
dof_data
=
this
->
getDOFDataTyped
<
DOFDataDefault
>
(
dof_id
);
AKANTU_DEBUG_ASSERT
(
dof_data
.
local_equation_number
.
size
()
==
array_to_assemble
.
size
()
*
array_to_assemble
.
getNbComponent
(),
"The array to assemble does not have a correct size."
<<
" ("
<<
array_to_assemble
.
getID
()
<<
")"
);
if
(
dof_data
.
support_type
==
_dst_nodal
and
mesh
->
isPeriodic
())
{
for
(
auto
&&
data
:
zip
(
dof_data
.
local_equation_number
,
dof_data
.
associated_nodes
,
make_view
(
array_to_assemble
)))
{
auto
&&
equ_num
=
std
::
get
<
0
>
(
data
);
auto
&&
node
=
std
::
get
<
1
>
(
data
);
auto
&&
arr
=
std
::
get
<
2
>
(
data
);
global_array
(
equ_num
)
+=
scale_factor
*
(
arr
)
*
(
not
this
->
mesh
->
isPeriodicSlave
(
node
));
}
}
else
{
for
(
auto
&&
data
:
zip
(
dof_data
.
local_equation_number
,
make_view
(
array_to_assemble
)))
{
auto
&&
equ_num
=
std
::
get
<
0
>
(
data
);
auto
&&
arr
=
std
::
get
<
1
>
(
data
);
global_array
(
equ_num
)
+=
scale_factor
*
(
arr
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
DOFManagerDefault
::
DOFDataDefault
::
DOFDataDefault
(
const
ID
&
dof_id
)
:
DOFData
(
dof_id
),
associated_nodes
(
0
,
1
,
dof_id
+
"associated_nodes"
)
{}
/* -------------------------------------------------------------------------- */
DOFManager
::
DOFData
&
DOFManagerDefault
::
getNewDOFData
(
const
ID
&
dof_id
)
{
this
->
dofs
[
dof_id
]
=
std
::
make_unique
<
DOFDataDefault
>
(
dof_id
);
return
*
this
->
dofs
[
dof_id
];
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
registerDOFsInternal
(
const
ID
&
dof_id
,
UInt
nb_dofs
,
UInt
nb_pure_local_dofs
)
{
// access the relevant data to update
auto
&
dof_data
=
this
->
getDOFDataTyped
<
DOFDataDefault
>
(
dof_id
);
const
auto
&
support_type
=
dof_data
.
support_type
;
const
auto
&
group
=
dof_data
.
group_support
;
switch
(
support_type
)
{
case
_dst_nodal:
if
(
group
!=
"__mesh__"
)
{
auto
&
support_nodes
=
this
->
mesh
->
getElementGroup
(
group
).
getNodeGroup
().
getNodes
();
this
->
updateDOFsData
(
dof_data
,
nb_dofs
,
nb_pure_local_dofs
,
support_nodes
.
size
(),
[
&
support_nodes
](
UInt
node
)
->
UInt
{
return
support_nodes
[
node
];
});
}
else
{
this
->
updateDOFsData
(
dof_data
,
nb_dofs
,
nb_pure_local_dofs
,
mesh
->
getNbNodes
(),
[](
UInt
node
)
->
UInt
{
return
node
;
});
}
break
;
case
_dst_generic:
this
->
updateDOFsData
(
dof_data
,
nb_dofs
,
nb_pure_local_dofs
);
break
;
}
// update the synchronizer if needed
if
(
this
->
synchronizer
)
this
->
synchronizer
->
registerDOFs
(
dof_id
);
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
registerDOFs
(
const
ID
&
dof_id
,
Array
<
Real
>
&
dofs_array
,
const
DOFSupportType
&
support_type
)
{
// stores the current numbers of dofs
UInt
nb_dofs_old
=
this
->
local_system_size
;
UInt
nb_pure_local_dofs_old
=
this
->
pure_local_system_size
;
// update or create the dof_data
DOFManager
::
registerDOFs
(
dof_id
,
dofs_array
,
support_type
);
UInt
nb_dofs
=
this
->
local_system_size
-
nb_dofs_old
;
UInt
nb_pure_local_dofs
=
this
->
pure_local_system_size
-
nb_pure_local_dofs_old
;
this
->
registerDOFsInternal
(
dof_id
,
nb_dofs
,
nb_pure_local_dofs
);
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
registerDOFs
(
const
ID
&
dof_id
,
Array
<
Real
>
&
dofs_array
,
const
ID
&
group_support
)
{
// stores the current numbers of dofs
UInt
nb_dofs_old
=
this
->
local_system_size
;
UInt
nb_pure_local_dofs_old
=
this
->
pure_local_system_size
;
// update or create the dof_data
DOFManager
::
registerDOFs
(
dof_id
,
dofs_array
,
group_support
);
UInt
nb_dofs
=
this
->
local_system_size
-
nb_dofs_old
;
UInt
nb_pure_local_dofs
=
this
->
pure_local_system_size
-
nb_pure_local_dofs_old
;
this
->
registerDOFsInternal
(
dof_id
,
nb_dofs
,
nb_pure_local_dofs
);
}
/* -------------------------------------------------------------------------- */
SparseMatrix
&
DOFManagerDefault
::
getNewMatrix
(
const
ID
&
id
,
const
MatrixType
&
matrix_type
)
{
ID
matrix_id
=
this
->
id
+
":mtx:"
+
id
;
std
::
unique_ptr
<
SparseMatrix
>
sm
=
std
::
make_unique
<
SparseMatrixAIJ
>
(
*
this
,
matrix_type
,
matrix_id
);
return
this
->
registerSparseMatrix
(
matrix_id
,
sm
);
}
/* -------------------------------------------------------------------------- */
SparseMatrix
&
DOFManagerDefault
::
getNewMatrix
(
const
ID
&
id
,
const
ID
&
matrix_to_copy_id
)
{
ID
matrix_id
=
this
->
id
+
":mtx:"
+
id
;
SparseMatrixAIJ
&
sm_to_copy
=
this
->
getMatrix
(
matrix_to_copy_id
);
std
::
unique_ptr
<
SparseMatrix
>
sm
=
std
::
make_unique
<
SparseMatrixAIJ
>
(
sm_to_copy
,
matrix_id
);
return
this
->
registerSparseMatrix
(
matrix_id
,
sm
);
}
/* -------------------------------------------------------------------------- */
SparseMatrixAIJ
&
DOFManagerDefault
::
getMatrix
(
const
ID
&
id
)
{
SparseMatrix
&
matrix
=
DOFManager
::
getMatrix
(
id
);
return
dynamic_cast
<
SparseMatrixAIJ
&>
(
matrix
);
}
/* -------------------------------------------------------------------------- */
NonLinearSolver
&
DOFManagerDefault
::
getNewNonLinearSolver
(
const
ID
&
id
,
const
NonLinearSolverType
&
type
)
{
ID
non_linear_solver_id
=
this
->
id
+
":nls:"
+
id
;
std
::
unique_ptr
<
NonLinearSolver
>
nls
;
switch
(
type
)
{
#if defined(AKANTU_IMPLICIT)
case
NonLinearSolverType
::
_newton_raphson:
case
NonLinearSolverType
::
_newton_raphson_modified:
{
nls
=
std
::
make_unique
<
NonLinearSolverNewtonRaphson
>
(
*
this
,
type
,
non_linear_solver_id
,
this
->
memory_id
);
break
;
}
case
NonLinearSolverType
::
_linear:
{
nls
=
std
::
make_unique
<
NonLinearSolverLinear
>
(
*
this
,
type
,
non_linear_solver_id
,
this
->
memory_id
);
break
;
}
#endif
case
NonLinearSolverType
::
_lumped:
{
nls
=
std
::
make_unique
<
NonLinearSolverLumped
>
(
*
this
,
type
,
non_linear_solver_id
,
this
->
memory_id
);
break
;
}
default
:
AKANTU_EXCEPTION
(
"The asked type of non linear solver is not supported by "
"this dof manager"
);
}
return
this
->
registerNonLinearSolver
(
non_linear_solver_id
,
nls
);
}
/* -------------------------------------------------------------------------- */
TimeStepSolver
&
DOFManagerDefault
::
getNewTimeStepSolver
(
const
ID
&
id
,
const
TimeStepSolverType
&
type
,
NonLinearSolver
&
non_linear_solver
)
{
ID
time_step_solver_id
=
this
->
id
+
":tss:"
+
id
;
std
::
unique_ptr
<
TimeStepSolver
>
tss
=
std
::
make_unique
<
TimeStepSolverDefault
>
(
*
this
,
type
,
non_linear_solver
,
time_step_solver_id
,
this
->
memory_id
);
return
this
->
registerTimeStepSolver
(
time_step_solver_id
,
tss
);
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
clearResidual
()
{
this
->
residual
.
resize
(
this
->
local_system_size
);
this
->
residual
.
clear
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
clearMatrix
(
const
ID
&
mtx
)
{
this
->
getMatrix
(
mtx
).
clear
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
clearLumpedMatrix
(
const
ID
&
mtx
)
{
this
->
getLumpedMatrix
(
mtx
).
clear
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
updateGlobalBlockedDofs
()
{
auto
it
=
this
->
dofs
.
begin
();
auto
end
=
this
->
dofs
.
end
();
this
->
previous_global_blocked_dofs
.
copy
(
this
->
global_blocked_dofs
);
this
->
global_blocked_dofs
.
resize
(
this
->
local_system_size
);
this
->
global_blocked_dofs
.
clear
();
for
(;
it
!=
end
;
++
it
)
{
if
(
!
this
->
hasBlockedDOFs
(
it
->
first
))
continue
;
DOFData
&
dof_data
=
*
it
->
second
;
this
->
assembleToGlobalArray
(
it
->
first
,
*
dof_data
.
blocked_dofs
,
this
->
global_blocked_dofs
,
true
);
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
DOFManagerDefault
::
getArrayPerDOFs
(
const
ID
&
dof_id
,
const
Array
<
T
>
&
global_array
,
Array
<
T
>
&
local_array
)
const
{
AKANTU_DEBUG_IN
();
const
Array
<
Int
>
&
equation_number
=
this
->
getLocalEquationsNumbers
(
dof_id
);
UInt
nb_degree_of_freedoms
=
equation_number
.
size
();
local_array
.
resize
(
nb_degree_of_freedoms
/
local_array
.
getNbComponent
());
auto
loc_it
=
local_array
.
begin_reinterpret
(
nb_degree_of_freedoms
);
auto
equ_it
=
equation_number
.
begin
();
for
(
UInt
d
=
0
;
d
<
nb_degree_of_freedoms
;
++
d
,
++
loc_it
,
++
equ_it
)
{
(
*
loc_it
)
=
global_array
(
*
equ_it
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
getSolutionPerDOFs
(
const
ID
&
dof_id
,
Array
<
Real
>
&
solution_array
)
{
AKANTU_DEBUG_IN
();
this
->
getArrayPerDOFs
(
dof_id
,
this
->
global_solution
,
solution_array
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
getLumpedMatrixPerDOFs
(
const
ID
&
dof_id
,
const
ID
&
lumped_mtx
,
Array
<
Real
>
&
lumped
)
{
AKANTU_DEBUG_IN
();
this
->
getArrayPerDOFs
(
dof_id
,
this
->
getLumpedMatrix
(
lumped_mtx
),
lumped
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
assembleToResidual
(
const
ID
&
dof_id
,
Array
<
Real
>
&
array_to_assemble
,
Real
scale_factor
)
{
AKANTU_DEBUG_IN
();
this
->
makeConsistentForPeriodicity
(
dof_id
,
array_to_assemble
);
this
->
assembleToGlobalArray
(
dof_id
,
array_to_assemble
,
this
->
residual
,
scale_factor
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
assembleToLumpedMatrix
(
const
ID
&
dof_id
,
Array
<
Real
>
&
array_to_assemble
,
const
ID
&
lumped_mtx
,
Real
scale_factor
)
{
AKANTU_DEBUG_IN
();
this
->
makeConsistentForPeriodicity
(
dof_id
,
array_to_assemble
);
Array
<
Real
>
&
lumped
=
this
->
getLumpedMatrix
(
lumped_mtx
);
this
->
assembleToGlobalArray
(
dof_id
,
array_to_assemble
,
lumped
,
scale_factor
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
assembleMatMulVectToResidual
(
const
ID
&
dof_id
,
const
ID
&
A_id
,
const
Array
<
Real
>
&
x
,
Real
scale_factor
)
{
SparseMatrixAIJ
&
A
=
this
->
getMatrix
(
A_id
);
// Array<Real> data_cache(this->local_system_size, 1, 0.);
this
->
data_cache
.
resize
(
this
->
local_system_size
);
this
->
data_cache
.
clear
();
this
->
assembleToGlobalArray
(
dof_id
,
x
,
data_cache
,
1.
);
Array
<
Real
>
tmp_residual
(
this
->
residual
.
size
(),
1
,
0.
);
A
.
matVecMul
(
data_cache
,
tmp_residual
,
scale_factor
,
1.
);
this
->
residual
+=
tmp_residual
;
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
assembleLumpedMatMulVectToResidual
(
const
ID
&
dof_id
,
const
ID
&
A_id
,
const
Array
<
Real
>
&
x
,
Real
scale_factor
)
{
const
Array
<
Real
>
&
A
=
this
->
getLumpedMatrix
(
A_id
);
// Array<Real> data_cache(this->local_system_size, 1, 0.);
this
->
data_cache
.
resize
(
this
->
local_system_size
);
this
->
data_cache
.
clear
();
this
->
assembleToGlobalArray
(
dof_id
,
x
,
data_cache
,
scale_factor
);
auto
A_it
=
A
.
begin
();
auto
A_end
=
A
.
end
();
auto
x_it
=
data_cache
.
begin
();
auto
r_it
=
this
->
residual
.
begin
();
for
(;
A_it
!=
A_end
;
++
A_it
,
++
x_it
,
++
r_it
)
{
*
r_it
+=
*
A_it
*
*
x_it
;
}
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
assembleElementalMatricesToMatrix
(
const
ID
&
matrix_id
,
const
ID
&
dof_id
,
const
Array
<
Real
>
&
elementary_mat
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
,
const
MatrixType
&
elemental_matrix_type
,
const
Array
<
UInt
>
&
filter_elements
)
{
AKANTU_DEBUG_IN
();
auto
&
dof_data
=
this
->
getDOFData
(
dof_id
);
AKANTU_DEBUG_ASSERT
(
dof_data
.
support_type
==
_dst_nodal
,
"This function applies only on Nodal dofs"
);
this
->
addToProfile
(
matrix_id
,
dof_id
,
type
,
ghost_type
);
const
auto
&
equation_number
=
this
->
getLocalEquationNumbers
(
dof_id
);
auto
&
A
=
this
->
getMatrix
(
matrix_id
);
UInt
nb_element
;
UInt
*
filter_it
=
nullptr
;
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
size
();
filter_it
=
filter_elements
.
storage
();
}
else
{
if
(
dof_data
.
group_support
!=
"__mesh__"
)
{
const
auto
&
group_elements
=
this
->
mesh
->
getElementGroup
(
dof_data
.
group_support
)
.
getElements
(
type
,
ghost_type
);
nb_element
=
group_elements
.
size
();
filter_it
=
group_elements
.
storage
();
}
else
{
nb_element
=
this
->
mesh
->
getNbElement
(
type
,
ghost_type
);
}
}
AKANTU_DEBUG_ASSERT
(
elementary_mat
.
size
()
==
nb_element
,
"The vector elementary_mat("
<<
elementary_mat
.
getID
()
<<
") has not the good size."
);
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
nb_degree_of_freedom
=
dof_data
.
dof
->
getNbComponent
();
const
Array
<
UInt
>
&
connectivity
=
this
->
mesh
->
getConnectivity
(
type
,
ghost_type
);
auto
conn_begin
=
connectivity
.
begin
(
nb_nodes_per_element
);
auto
conn_it
=
conn_begin
;
auto
size_mat
=
nb_nodes_per_element
*
nb_degree_of_freedom
;
Vector
<
Int
>
element_eq_nb
(
nb_degree_of_freedom
*
nb_nodes_per_element
);
auto
el_mat_it
=
elementary_mat
.
begin
(
size_mat
,
size_mat
);
for
(
UInt
e
=
0
;
e
<
nb_element
;
++
e
,
++
el_mat_it
)
{
if
(
filter_it
)
conn_it
=
conn_begin
+
*
filter_it
;
this
->
extractElementEquationNumber
(
equation_number
,
*
conn_it
,
nb_degree_of_freedom
,
element_eq_nb
);
std
::
transform
(
element_eq_nb
.
begin
(),
element_eq_nb
.
end
(),
element_eq_nb
.
begin
(),
[
&
](
UInt
&
local
)
->
UInt
{
return
this
->
localToGlobalEquationNumber
(
local
);
});
if
(
filter_it
)
++
filter_it
;
else
++
conn_it
;
if
(
A
.
getMatrixType
()
==
_symmetric
)
if
(
elemental_matrix_type
==
_symmetric
)
this
->
addSymmetricElementalMatrixToSymmetric
(
A
,
*
el_mat_it
,
element_eq_nb
,
A
.
size
());
else
this
->
addUnsymmetricElementalMatrixToSymmetric
(
A
,
*
el_mat_it
,
element_eq_nb
,
A
.
size
());
else
this
->
addElementalMatrixToUnsymmetric
(
A
,
*
el_mat_it
,
element_eq_nb
,
A
.
size
());
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
assemblePreassembledMatrix
(
const
ID
&
dof_id_m
,
const
ID
&
dof_id_n
,
const
ID
&
matrix_id
,
const
TermsToAssemble
&
terms
)
{
const
auto
&
equation_number_m
=
this
->
getLocalEquationsNumbers
(
dof_id_m
);
const
auto
&
equation_number_n
=
this
->
getLocalEquationsNumbers
(
dof_id_n
);
SparseMatrixAIJ
&
A
=
this
->
getMatrix
(
matrix_id
);
for
(
const
auto
&
term
:
terms
)
{
auto
gi
=
this
->
localToGlobalEquationNumber
(
equation_number_m
(
term
.
i
()));
auto
gj
=
this
->
localToGlobalEquationNumber
(
equation_number_n
(
term
.
j
()));
A
.
add
(
gi
,
gj
,
term
);
}
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
addToProfile
(
const
ID
&
matrix_id
,
const
ID
&
dof_id
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
auto
&
dof_data
=
this
->
getDOFData
(
dof_id
);
if
(
dof_data
.
support_type
!=
_dst_nodal
)
return
;
auto
mat_dof
=
std
::
make_pair
(
matrix_id
,
dof_id
);
auto
type_pair
=
std
::
make_pair
(
type
,
ghost_type
);
auto
prof_it
=
this
->
matrix_profiled_dofs
.
find
(
mat_dof
);
if
(
prof_it
!=
this
->
matrix_profiled_dofs
.
end
()
&&
std
::
find
(
prof_it
->
second
.
begin
(),
prof_it
->
second
.
end
(),
type_pair
)
!=
prof_it
->
second
.
end
())
return
;
auto
nb_degree_of_freedom_per_node
=
dof_data
.
dof
->
getNbComponent
();
const
auto
&
equation_number
=
this
->
getLocalEquationNumbers
(
dof_id
);
auto
&
A
=
this
->
getMatrix
(
matrix_id
);
auto
size
=
A
.
size
();
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
const
auto
&
connectivity
=
this
->
mesh
->
getConnectivity
(
type
,
ghost_type
);
auto
cbegin
=
connectivity
.
begin
(
nb_nodes_per_element
);
auto
cit
=
cbegin
;
auto
nb_elements
=
connectivity
.
size
();
UInt
*
ge_it
=
nullptr
;
if
(
dof_data
.
group_support
!=
"__mesh__"
)
{
const
auto
&
group_elements
=
this
->
mesh
->
getElementGroup
(
dof_data
.
group_support
)
.
getElements
(
type
,
ghost_type
);
ge_it
=
group_elements
.
storage
();
nb_elements
=
group_elements
.
size
();
}
UInt
size_mat
=
nb_nodes_per_element
*
nb_degree_of_freedom_per_node
;
Vector
<
Int
>
element_eq_nb
(
size_mat
);
for
(
UInt
e
=
0
;
e
<
nb_elements
;
++
e
)
{
if
(
ge_it
)
cit
=
cbegin
+
*
ge_it
;
this
->
extractElementEquationNumber
(
equation_number
,
*
cit
,
nb_degree_of_freedom_per_node
,
element_eq_nb
);
std
::
transform
(
element_eq_nb
.
storage
(),
element_eq_nb
.
storage
()
+
element_eq_nb
.
size
(),
element_eq_nb
.
storage
(),
[
&
](
auto
&
local
)
{
return
this
->
localToGlobalEquationNumber
(
local
);
});
if
(
ge_it
)
++
ge_it
;
else
++
cit
;
for
(
UInt
i
=
0
;
i
<
size_mat
;
++
i
)
{
UInt
c_irn
=
element_eq_nb
(
i
);
if
(
c_irn
<
size
)
{
for
(
UInt
j
=
0
;
j
<
size_mat
;
++
j
)
{
UInt
c_jcn
=
element_eq_nb
(
j
);
if
(
c_jcn
<
size
)
{
A
.
add
(
c_irn
,
c_jcn
);
}
}
}
}
}
this
->
matrix_profiled_dofs
[
mat_dof
].
push_back
(
type_pair
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
applyBoundary
(
const
ID
&
matrix_id
)
{
SparseMatrixAIJ
&
J
=
this
->
getMatrix
(
matrix_id
);
if
(
this
->
jacobian_release
==
J
.
getValueRelease
())
{
auto
are_equal
=
std
::
equal
(
global_blocked_dofs
.
begin
(),
global_blocked_dofs
.
end
(),
previous_global_blocked_dofs
.
begin
());
if
(
not
are_equal
)
J
.
applyBoundary
();
previous_global_blocked_dofs
.
copy
(
global_blocked_dofs
);
}
else
{
J
.
applyBoundary
();
}
this
->
jacobian_release
=
J
.
getValueRelease
();
}
/* -------------------------------------------------------------------------- */
const
Array
<
Real
>
&
DOFManagerDefault
::
getGlobalResidual
()
{
if
(
this
->
synchronizer
)
{
if
(
not
this
->
global_residual
)
{
this
->
global_residual
=
std
::
make_unique
<
Array
<
Real
>>
(
0
,
1
,
"global_residual"
);
}
if
(
this
->
synchronizer
->
getCommunicator
().
whoAmI
()
==
0
)
{
this
->
global_residual
->
resize
(
this
->
system_size
);
this
->
synchronizer
->
gather
(
this
->
residual
,
*
this
->
global_residual
);
}
else
{
this
->
synchronizer
->
gather
(
this
->
residual
);
}
return
*
this
->
global_residual
;
}
else
{
return
this
->
residual
;
}
}
/* -------------------------------------------------------------------------- */
const
Array
<
Real
>
&
DOFManagerDefault
::
getResidual
()
const
{
return
this
->
residual
;
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
setGlobalSolution
(
const
Array
<
Real
>
&
solution
)
{
if
(
this
->
synchronizer
)
{
if
(
this
->
synchronizer
->
getCommunicator
().
whoAmI
()
==
0
)
{
this
->
synchronizer
->
scatter
(
this
->
global_solution
,
solution
);
}
else
{
this
->
synchronizer
->
scatter
(
this
->
global_solution
);
}
}
else
{
AKANTU_DEBUG_ASSERT
(
solution
.
size
()
==
this
->
global_solution
.
size
(),
"Sequential call to this function needs the solution "
"to be the same size as the global_solution"
);
this
->
global_solution
.
copy
(
solution
);
}
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
onNodesAdded
(
const
Array
<
UInt
>
&
nodes_list
,
const
NewNodesEvent
&
event
)
{
DOFManager
::
onNodesAdded
(
nodes_list
,
event
);
if
(
this
->
synchronizer
)
this
->
synchronizer
->
onNodesAdded
(
nodes_list
);
}
/* -------------------------------------------------------------------------- */
std
::
pair
<
UInt
,
UInt
>
DOFManagerDefault
::
updateNodalDOFs
(
const
ID
&
dof_id
,
const
Array
<
UInt
>
&
nodes_list
)
{
UInt
nb_new_local_dofs
,
nb_new_pure_local
;
std
::
tie
(
nb_new_local_dofs
,
nb_new_pure_local
)
=
DOFManager
::
updateNodalDOFs
(
dof_id
,
nodes_list
);
auto
&
dof_data
=
this
->
getDOFDataTyped
<
DOFDataDefault
>
(
dof_id
);
updateDOFsData
(
dof_data
,
nb_new_local_dofs
,
nb_new_pure_local
,
nodes_list
.
size
(),
[
&
nodes_list
](
UInt
pos
)
->
UInt
{
return
nodes_list
[
pos
];
});
return
std
::
make_pair
(
nb_new_local_dofs
,
nb_new_pure_local
);
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
class
GlobalDOFInfoDataAccessor
:
public
DataAccessor
<
UInt
>
{
public
:
using
size_type
=
typename
std
::
unordered_map
<
UInt
,
std
::
vector
<
UInt
>>::
size_type
;
GlobalDOFInfoDataAccessor
(
DOFManagerDefault
::
DOFDataDefault
&
dof_data
,
DOFManagerDefault
&
dof_manager
)
:
dof_data
(
dof_data
),
dof_manager
(
dof_manager
)
{
for
(
auto
&&
pair
:
zip
(
dof_data
.
local_equation_number
,
dof_data
.
associated_nodes
))
{
UInt
node
,
dof
;
std
::
tie
(
dof
,
node
)
=
pair
;
dofs_per_node
[
node
].
push_back
(
dof
);
}
}
UInt
getNbData
(
const
Array
<
UInt
>
&
nodes
,
const
SynchronizationTag
&
tag
)
const
override
{
if
(
tag
==
_gst_ask_nodes
or
tag
==
_gst_giu_global_conn
)
{
return
nodes
.
size
()
*
dof_data
.
dof
->
getNbComponent
()
*
sizeof
(
UInt
);
}
return
0
;
}
void
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
UInt
>
&
nodes
,
const
SynchronizationTag
&
tag
)
const
override
{
if
(
tag
==
_gst_ask_nodes
or
tag
==
_gst_giu_global_conn
)
{
for
(
auto
&
node
:
nodes
)
{
auto
&
dofs
=
dofs_per_node
.
at
(
node
);
for
(
auto
&
dof
:
dofs
)
{
buffer
<<
dof_manager
.
global_equation_number
(
dof
);
}
}
}
}
void
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
UInt
>
&
nodes
,
const
SynchronizationTag
&
tag
)
override
{
if
(
tag
==
_gst_ask_nodes
or
tag
==
_gst_giu_global_conn
)
{
for
(
auto
&
node
:
nodes
)
{
auto
&
dofs
=
dofs_per_node
[
node
];
for
(
auto
dof
:
dofs
)
{
UInt
global_dof
;
buffer
>>
global_dof
;
AKANTU_DEBUG_ASSERT
(
(
dof_manager
.
global_equation_number
(
dof
)
==
UInt
(
-
1
)
or
dof_manager
.
global_equation_number
(
dof
)
==
global_dof
),
"This dof already had a global_dof_id which is different from "
"the received one. "
<<
dof_manager
.
global_equation_number
(
dof
)
<<
" != "
<<
global_dof
);
dof_manager
.
global_equation_number
(
dof
)
=
global_dof
;
dof_manager
.
global_to_local_mapping
[
global_dof
]
=
dof
;
}
}
}
}
protected
:
std
::
unordered_map
<
UInt
,
std
::
vector
<
UInt
>>
dofs_per_node
;
DOFManagerDefault
::
DOFDataDefault
&
dof_data
;
DOFManagerDefault
&
dof_manager
;
};
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
resizeGlobalArrays
()
{
// resize all relevant arrays
this
->
residual
.
resize
(
this
->
local_system_size
,
0.
);
this
->
dofs_flag
.
resize
(
this
->
local_system_size
,
NodeFlag
::
_normal
);
this
->
global_solution
.
resize
(
this
->
local_system_size
,
0.
);
this
->
global_blocked_dofs
.
resize
(
this
->
local_system_size
,
true
);
this
->
previous_global_blocked_dofs
.
resize
(
this
->
local_system_size
,
true
);
this
->
global_equation_number
.
resize
(
this
->
local_system_size
,
-
1
);
for
(
auto
&
lumped_matrix
:
lumped_matrices
)
lumped_matrix
.
second
->
resize
(
this
->
local_system_size
);
matrix_profiled_dofs
.
clear
();
for
(
auto
&
matrix
:
matrices
)
{
matrix
.
second
->
clearProfile
();
}
}
/* -------------------------------------------------------------------------- */
auto
DOFManagerDefault
::
computeFirstDOFIDs
(
UInt
nb_new_local_dofs
,
UInt
nb_new_pure_local
)
{
auto
prank
=
this
->
communicator
.
whoAmI
();
auto
psize
=
this
->
communicator
.
getNbProc
();
// determine the first local/global dof id to use
Array
<
UInt
>
nb_dofs_per_proc
(
psize
);
nb_dofs_per_proc
(
prank
)
=
nb_new_pure_local
;
this
->
communicator
.
allGather
(
nb_dofs_per_proc
);
this
->
first_global_dof_id
+=
std
::
accumulate
(
nb_dofs_per_proc
.
begin
(),
nb_dofs_per_proc
.
begin
()
+
prank
,
0
);
auto
first_global_dof_id
=
this
->
first_global_dof_id
;
auto
first_local_dof_id
=
this
->
local_system_size
-
nb_new_local_dofs
;
this
->
first_global_dof_id
+=
std
::
accumulate
(
nb_dofs_per_proc
.
begin
()
+
prank
,
nb_dofs_per_proc
.
end
(),
0
);
return
std
::
make_pair
(
first_local_dof_id
,
first_global_dof_id
);
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
updateDOFsData
(
DOFDataDefault
&
dof_data
,
UInt
nb_new_local_dofs
,
UInt
nb_new_pure_local
,
UInt
nb_node
,
const
std
::
function
<
UInt
(
UInt
)
>
&
getNode
)
{
auto
nb_local_dofs_added
=
nb_node
*
dof_data
.
dof
->
getNbComponent
();
resizeGlobalArrays
();
auto
first_dof_pos
=
dof_data
.
local_equation_number
.
size
();
dof_data
.
local_equation_number
.
reserve
(
dof_data
.
local_equation_number
.
size
()
+
nb_local_dofs_added
);
dof_data
.
associated_nodes
.
reserve
(
dof_data
.
associated_nodes
.
size
()
+
nb_local_dofs_added
);
std
::
unordered_map
<
std
::
pair
<
UInt
,
UInt
>
,
UInt
>
masters_dofs
;
// update per dof info
UInt
local_eq_num
,
first_global_dof_id
;
std
::
tie
(
local_eq_num
,
first_global_dof_id
)
=
computeFirstDOFIDs
(
nb_new_local_dofs
,
nb_new_pure_local
);
for
(
auto
d
:
arange
(
nb_local_dofs_added
))
{
auto
node
=
getNode
(
d
/
dof_data
.
dof
->
getNbComponent
());
auto
dof_flag
=
this
->
mesh
->
getNodeFlag
(
node
);
dof_data
.
associated_nodes
.
push_back
(
node
);
auto
is_local_dof
=
this
->
mesh
->
isLocalOrMasterNode
(
node
);
auto
is_periodic_slave
=
this
->
mesh
->
isPeriodicSlave
(
node
);
auto
is_periodic_master
=
this
->
mesh
->
isPeriodicMaster
(
node
);
if
(
is_periodic_slave
)
{
dof_data
.
local_equation_number
.
push_back
(
UInt
(
-
1
));
continue
;
}
// update equation numbers
this
->
dofs_flag
(
local_eq_num
)
=
dof_flag
;
dof_data
.
local_equation_number
.
push_back
(
local_eq_num
);
if
(
is_local_dof
)
{
this
->
global_equation_number
(
local_eq_num
)
=
first_global_dof_id
;
this
->
global_to_local_mapping
[
first_global_dof_id
]
=
local_eq_num
;
++
first_global_dof_id
;
}
else
{
this
->
global_equation_number
(
local_eq_num
)
=
UInt
(
-
1
);
}
if
(
is_periodic_master
)
{
auto
node
=
getNode
(
d
/
dof_data
.
dof
->
getNbComponent
());
auto
dof
=
d
%
dof_data
.
dof
->
getNbComponent
();
masters_dofs
.
insert
(
std
::
make_pair
(
std
::
make_pair
(
node
,
dof
),
local_eq_num
));
}
++
local_eq_num
;
}
// correct periodic slave equation numbers
if
(
this
->
mesh
->
isPeriodic
())
{
auto
assoc_begin
=
dof_data
.
associated_nodes
.
begin
();
for
(
auto
d
:
arange
(
nb_local_dofs_added
))
{
auto
node
=
dof_data
.
associated_nodes
(
first_dof_pos
+
d
);
if
(
not
this
->
mesh
->
isPeriodicSlave
(
node
))
continue
;
auto
master_node
=
this
->
mesh
->
getPeriodicMaster
(
node
);
auto
dof
=
d
%
dof_data
.
dof
->
getNbComponent
();
dof_data
.
local_equation_number
(
first_dof_pos
+
d
)
=
masters_dofs
[
std
::
make_pair
(
master_node
,
dof
)];
}
}
// synchronize the global numbering for slaves
if
(
this
->
synchronizer
)
{
GlobalDOFInfoDataAccessor
data_accessor
(
dof_data
,
*
this
);
if
(
this
->
mesh
->
isPeriodic
())
{
mesh
->
getPeriodicNodeSynchronizer
().
synchronizeOnce
(
data_accessor
,
_gst_giu_global_conn
);
}
auto
&
node_synchronizer
=
this
->
mesh
->
getNodeSynchronizer
();
node_synchronizer
.
synchronizeOnce
(
data_accessor
,
_gst_ask_nodes
);
}
}
/* -------------------------------------------------------------------------- */
void
DOFManagerDefault
::
updateDOFsData
(
DOFDataDefault
&
dof_data
,
UInt
nb_new_local_dofs
,
UInt
nb_new_pure_local
)
{
resizeGlobalArrays
();
dof_data
.
local_equation_number
.
reserve
(
dof_data
.
local_equation_number
.
size
()
+
nb_new_local_dofs
);
UInt
first_local_dof_id
,
first_global_dof_id
;
std
::
tie
(
first_local_dof_id
,
first_global_dof_id
)
=
computeFirstDOFIDs
(
nb_new_local_dofs
,
nb_new_pure_local
);
// update per dof info
for
(
auto
_
[[
gnu
::
unused
]]
:
arange
(
nb_new_local_dofs
))
{
// update equation numbers
this
->
dofs_flag
(
first_local_dof_id
)
=
NodeFlag
::
_normal
;
;
dof_data
.
local_equation_number
.
push_back
(
first_local_dof_id
);
this
->
global_equation_number
(
first_local_dof_id
)
=
first_global_dof_id
;
this
->
global_to_local_mapping
[
first_global_dof_id
]
=
first_local_dof_id
;
++
first_global_dof_id
;
++
first_local_dof_id
;
}
}
/* -------------------------------------------------------------------------- */
// register in factory
static
bool
default_dof_manager_is_registered
[[
gnu
::
unused
]]
=
DefaultDOFManagerFactory
::
getInstance
().
registerAllocator
(
"default"
,
[](
const
ID
&
id
,
const
MemoryID
&
mem_id
)
->
std
::
unique_ptr
<
DOFManager
>
{
return
std
::
make_unique
<
DOFManagerDefault
>
(
id
,
mem_id
);
});
static
bool
dof_manager_is_registered
[[
gnu
::
unused
]]
=
DOFManagerFactory
::
getInstance
().
registerAllocator
(
"default"
,
[](
Mesh
&
mesh
,
const
ID
&
id
,
const
MemoryID
&
mem_id
)
->
std
::
unique_ptr
<
DOFManager
>
{
return
std
::
make_unique
<
DOFManagerDefault
>
(
mesh
,
id
,
mem_id
);
});
}
// namespace akantu
Event Timeline
Log In to Comment