Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91354277
ntn_contact.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 06:51
Size
21 KB
Mime Type
text/x-c
Expires
Tue, Nov 12, 06:51 (2 d)
Engine
blob
Format
Raw Data
Handle
22242396
Attached To
rAKA akantu
ntn_contact.cc
View Options
/**
* @file ntn_contact.cc
* @author David Kammer <david.kammer@epfl.ch>
* @date Thu Mar 14 11:52:00 2013
*
* @brief implementation of ntn_contact
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
// simtools
#include "ntn_contact.hh"
__BEGIN_SIMTOOLS__
/* -------------------------------------------------------------------------- */
NTNContact
::
NTNContact
(
SolidMechanicsModel
&
model
,
const
ContactID
&
id
,
const
MemoryID
&
memory_id
)
:
Memory
(
memory_id
),
id
(
id
),
model
(
model
),
slaves
(
0
,
1
,
0
,
id
+
":slaves"
,
std
::
numeric_limits
<
UInt
>::
quiet_NaN
(),
"slaves"
),
masters
(
0
,
1
,
0
,
id
+
":masters"
,
std
::
numeric_limits
<
UInt
>::
quiet_NaN
(),
"masters"
),
normals
(
0
,
model
.
getSpatialDimension
(),
0
,
id
+
":normals"
,
std
::
numeric_limits
<
Real
>::
quiet_NaN
(),
"normals"
),
contact_pressure
(
0
,
model
.
getSpatialDimension
(),
0
,
id
+
":contact_pressure"
,
std
::
numeric_limits
<
Real
>::
quiet_NaN
(),
"contact_pressure"
),
is_in_contact
(
0
,
1
,
false
,
id
+
":is_in_contact"
,
false
,
"is_in_contact"
),
lumped_boundary
(
0
,
2
,
0
,
id
+
":lumped_boundary"
,
std
::
numeric_limits
<
Real
>::
quiet_NaN
(),
"lumped_boundary"
),
impedance
(
0
,
1
,
0
,
id
+
":impedance"
,
std
::
numeric_limits
<
Real
>::
quiet_NaN
(),
"impedance"
),
contact_surfaces
()
{
AKANTU_DEBUG_IN
();
FEM
&
boundary_fem
=
this
->
model
.
getFEMBoundary
();
boundary_fem
.
initShapeFunctions
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
addSurfacePair
(
Surface
slave
,
Surface
master
,
UInt
surface_normal_dir
)
{
AKANTU_DEBUG_IN
();
UInt
dim
=
this
->
model
.
getSpatialDimension
();
AKANTU_DEBUG_ASSERT
(
surface_normal_dir
<
dim
,
"Model is of "
<<
dim
<<
" dimensions"
<<
" and cannot have direction "
<<
surface_normal_dir
<<
" for surface normal"
);
this
->
contact_surfaces
.
insert
(
slave
);
this
->
contact_surfaces
.
insert
(
master
);
// offset for projection computation
UInt
offset
[
dim
-
1
];
for
(
UInt
i
=
0
,
j
=
0
;
i
<
dim
;
++
i
)
{
if
(
surface_normal_dir
!=
i
)
{
offset
[
j
]
=
i
;
++
j
;
}
}
// get all nodes for all surfaces
CSR
<
UInt
>
all_surface_nodes
;
MeshUtils
::
buildNodesPerSurface
(
this
->
model
.
getFEM
().
getMesh
(),
all_surface_nodes
);
// find slave nodes
Array
<
UInt
>
slave_nodes
(
0
);
for
(
CSR
<
UInt
>::
iterator
snode
=
all_surface_nodes
.
begin
(
slave
);
snode
!=
all_surface_nodes
.
end
(
slave
);
++
snode
)
{
UInt
n
=
*
snode
;
slave_nodes
.
push_back
(
n
);
}
// find master nodes
Array
<
UInt
>
master_nodes
(
0
);
for
(
CSR
<
UInt
>::
iterator
mnode
=
all_surface_nodes
.
begin
(
master
);
mnode
!=
all_surface_nodes
.
end
(
master
);
++
mnode
)
{
UInt
n
=
*
mnode
;
master_nodes
.
push_back
(
n
);
}
// find projected node coordinates
const
Array
<
Real
>
&
coordinates
=
this
->
model
.
getFEM
().
getMesh
().
getNodes
();
Array
<
Real
>
proj_slave_coord
(
slave_nodes
.
getSize
(),
dim
-
1
,
0.
);
for
(
UInt
n
=
0
;
n
<
slave_nodes
.
getSize
();
++
n
)
{
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
proj_slave_coord
(
n
,
d
)
=
coordinates
(
slave_nodes
(
n
),
offset
[
d
]);
}
}
Array
<
Real
>
proj_master_coord
(
master_nodes
.
getSize
(),
dim
-
1
,
0.
);
for
(
UInt
n
=
0
;
n
<
master_nodes
.
getSize
();
++
n
)
{
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
proj_master_coord
(
n
,
d
)
=
coordinates
(
master_nodes
(
n
),
offset
[
d
]);
}
}
// find minimum distance between slave nodes to define tolerance
Real
min_dist
=
std
::
numeric_limits
<
Real
>::
max
();
for
(
UInt
i
=
0
;
i
<
slave_nodes
.
getSize
();
++
i
)
{
for
(
UInt
j
=
i
+
1
;
j
<
slave_nodes
.
getSize
();
++
j
)
{
Real
dist
=
0.
;
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
dist
+=
(
proj_slave_coord
(
i
,
d
)
-
proj_slave_coord
(
j
,
d
))
*
(
proj_slave_coord
(
i
,
d
)
-
proj_slave_coord
(
j
,
d
));
}
if
(
dist
<
min_dist
)
min_dist
=
dist
;
}
}
min_dist
=
std
::
sqrt
(
min_dist
);
Real
local_tol
=
0.1
*
min_dist
;
// find master slave node pairs
for
(
UInt
i
=
0
;
i
<
slave_nodes
.
getSize
();
++
i
)
{
for
(
UInt
j
=
0
;
j
<
master_nodes
.
getSize
();
++
j
)
{
Real
dist
=
0.
;
for
(
UInt
d
=
0
;
d
<
dim
-
1
;
++
d
)
{
dist
+=
(
proj_slave_coord
(
i
,
d
)
-
proj_master_coord
(
j
,
d
))
*
(
proj_slave_coord
(
i
,
d
)
-
proj_master_coord
(
j
,
d
));
}
dist
=
std
::
sqrt
(
dist
);
if
(
dist
<
local_tol
)
{
// it is a pair
this
->
addNodePair
(
slave_nodes
(
i
),
master_nodes
(
j
));
/*
this->slaves.push_back(slave_nodes(i));
this->masters.push_back(master_nodes(j));
this->is_in_contact.push_back(false);
this->contact_pressure.push_back(std::numeric_limits<Real>::quiet_NaN());
this->impedance.push_back(std::numeric_limits<Real>::quiet_NaN());
Real nan_two[2];
nan_two[0] = std::numeric_limits<Real>::quiet_NaN();
nan_two[1] = std::numeric_limits<Real>::quiet_NaN();
this->lumped_boundary.push_back(nan_two);
Real nan_normal[dim];
for (UInt d=0; d<dim; ++d)
nan_normal[d] = std::numeric_limits<Real>::quiet_NaN();
this->normals.push_back(nan_normal);
*/
continue
;
// found master do not need to search further for this slave
}
}
}
// synchronize with depending nodes
updateInternalData
();
syncArrays
(
_added
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
addNodePair
(
UInt
slave
,
UInt
master
)
{
AKANTU_DEBUG_IN
();
UInt
dim
=
this
->
model
.
getSpatialDimension
();
// add nodes to the node arrays
this
->
slaves
.
push_back
(
slave
);
this
->
masters
.
push_back
(
master
);
// set contact as false
this
->
is_in_contact
.
push_back
(
false
);
// before initializing
// set contact pressure, impedance, normal, lumped_boundary to Nan
this
->
contact_pressure
.
push_back
(
std
::
numeric_limits
<
Real
>::
quiet_NaN
());
this
->
impedance
.
push_back
(
std
::
numeric_limits
<
Real
>::
quiet_NaN
());
Real
nan_two
[
2
];
nan_two
[
0
]
=
std
::
numeric_limits
<
Real
>::
quiet_NaN
();
nan_two
[
1
]
=
std
::
numeric_limits
<
Real
>::
quiet_NaN
();
this
->
lumped_boundary
.
push_back
(
nan_two
);
Real
nan_normal
[
dim
];
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
nan_normal
[
d
]
=
std
::
numeric_limits
<
Real
>::
quiet_NaN
();
this
->
normals
.
push_back
(
nan_normal
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
addNodePairs
(
Array
<
UInt
>
&
pairs
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
(
pairs
.
getNbComponent
()
==
2
,
"Array of node pairs should have nb_component = 2,"
<<
" but has nb_component = "
<<
pairs
.
getNbComponent
());
UInt
nb_pairs
=
pairs
.
getSize
();
for
(
UInt
n
=
0
;
n
<
nb_pairs
;
++
n
)
{
this
->
addNodePair
(
pairs
(
n
,
0
),
pairs
(
n
,
1
));
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/*
This function only works for surface elements with one quad point. For
surface elements with more quad points, it computes still, but the result
might not be what you are looking for.
*/
void
NTNContact
::
updateNormals
()
{
AKANTU_DEBUG_IN
();
UInt
dim
=
this
->
model
.
getSpatialDimension
();
const
Array
<
Real
>
&
cur_pos
=
this
->
model
.
getCurrentPosition
();
FEM
&
boundary_fem
=
this
->
model
.
getFEMBoundary
();
// contact information
UInt
nb_contact_nodes
=
this
->
masters
.
getSize
();
// set normals to zero
this
->
normals
.
clear
();
const
Mesh
&
mesh
=
this
->
model
.
getFEM
().
getMesh
();
Mesh
::
type_iterator
it
=
mesh
.
firstType
(
dim
-
1
);
Mesh
::
type_iterator
last
=
mesh
.
lastType
(
dim
-
1
);
for
(;
it
!=
last
;
++
it
)
{
// get elements connected to each node
CSR
<
UInt
>
node_to_element
;
MeshUtils
::
buildNode2ElementsByElementType
(
mesh
,
*
it
,
node_to_element
);
// compute the normals
Array
<
Real
>
quad_normals
(
0
,
dim
);
boundary_fem
.
computeNormalsOnControlPoints
(
cur_pos
,
quad_normals
,
*
it
);
UInt
nb_quad_points
=
boundary_fem
.
getNbQuadraturePoints
(
*
it
);
// add up normals to all master nodes
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
UInt
master
=
this
->
masters
(
n
);
CSR
<
UInt
>::
iterator
elem
=
node_to_element
.
begin
(
master
);
// loop over all elements connected to this master node
for
(;
elem
!=
node_to_element
.
end
(
master
);
++
elem
)
{
UInt
e
=
*
elem
;
// loop over all quad points of this element
for
(
UInt
q
=
0
;
q
<
nb_quad_points
;
++
q
)
{
// add quad normal to master normal
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
this
->
normals
(
n
,
d
)
+=
quad_normals
(
e
*
nb_quad_points
+
q
,
d
);
}
}
}
}
}
// normalize normals
Real
*
master_normals
=
this
->
normals
.
storage
();
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
if
(
dim
==
2
)
Math
::
normalize2
(
&
(
master_normals
[
n
*
dim
]));
else
if
(
dim
==
3
)
Math
::
normalize3
(
&
(
master_normals
[
n
*
dim
]));
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
registerSyncronizedArray
(
SyncronizedArrayBase
&
array
)
{
AKANTU_DEBUG_IN
();
this
->
slaves
.
registerDependingArray
(
array
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
dumpRestart
(
std
::
string
file_name
)
const
{
AKANTU_DEBUG_IN
();
this
->
slaves
.
dumpRestartFile
(
file_name
);
this
->
masters
.
dumpRestartFile
(
file_name
);
this
->
normals
.
dumpRestartFile
(
file_name
);
this
->
is_in_contact
.
dumpRestartFile
(
file_name
);
this
->
contact_pressure
.
dumpRestartFile
(
file_name
);
this
->
lumped_boundary
.
dumpRestartFile
(
file_name
);
this
->
impedance
.
dumpRestartFile
(
file_name
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
readRestart
(
std
::
string
file_name
)
{
AKANTU_DEBUG_IN
();
this
->
slaves
.
readRestartFile
(
file_name
);
this
->
masters
.
readRestartFile
(
file_name
);
this
->
normals
.
readRestartFile
(
file_name
);
this
->
is_in_contact
.
readRestartFile
(
file_name
);
this
->
contact_pressure
.
readRestartFile
(
file_name
);
this
->
lumped_boundary
.
readRestartFile
(
file_name
);
this
->
impedance
.
readRestartFile
(
file_name
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
updateInternalData
()
{
AKANTU_DEBUG_IN
();
updateNormals
();
updateLumpedBoundary
();
updateImpedance
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
updateImpedance
()
{
AKANTU_DEBUG_IN
();
UInt
nb_ntn_pairs
=
getNbContactNodes
();
Real
delta_t
=
this
->
model
.
getTimeStep
();
AKANTU_DEBUG_ASSERT
(
delta_t
!=
NAN
,
"Time step is NAN. Have you set it already?"
);
const
Array
<
Real
>
&
mass
=
this
->
model
.
getMass
();
for
(
UInt
n
=
0
;
n
<
nb_ntn_pairs
;
++
n
)
{
UInt
master
=
this
->
masters
(
n
);
UInt
slave
=
this
->
slaves
(
n
);
Real
imp
=
(
this
->
lumped_boundary
(
n
,
0
)
/
mass
(
master
))
+
(
this
->
lumped_boundary
(
n
,
1
)
/
mass
(
slave
));
imp
=
2
/
delta_t
/
imp
;
this
->
impedance
(
n
)
=
imp
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
updateLumpedBoundary
()
{
AKANTU_DEBUG_IN
();
// set all values in lumped_boundary to zero
this
->
lumped_boundary
.
clear
();
UInt
dim
=
this
->
model
.
getSpatialDimension
();
UInt
nb_contact_nodes
=
getNbContactNodes
();
const
FEM
&
boundary_fem
=
this
->
model
.
getFEMBoundary
();
const
Mesh
&
mesh
=
this
->
model
.
getFEM
().
getMesh
();
Mesh
::
type_iterator
it
=
mesh
.
firstType
(
dim
-
1
);
Mesh
::
type_iterator
last
=
mesh
.
lastType
(
dim
-
1
);
for
(;
it
!=
last
;
++
it
)
{
// get elements connected to each node
CSR
<
UInt
>
node_to_element
;
MeshUtils
::
buildNode2ElementsByElementType
(
mesh
,
*
it
,
node_to_element
);
UInt
nb_nodes_per_element
=
mesh
.
getNbNodesPerElement
(
*
it
);
const
Array
<
UInt
>
&
connectivity
=
mesh
.
getConnectivity
(
*
it
);
// get shapes and compute integral
const
Array
<
Real
>
&
shapes
=
boundary_fem
.
getShapes
(
*
it
);
Array
<
Real
>
area
(
mesh
.
getNbElement
(
*
it
),
nb_nodes_per_element
);
boundary_fem
.
integrate
(
shapes
,
area
,
nb_nodes_per_element
,
*
it
);
// get surface id information
const
Array
<
UInt
>
&
surface_id
=
mesh
.
getSurfaceID
(
*
it
);
std
::
set
<
UInt
>::
iterator
pos
;
std
::
set
<
UInt
>::
iterator
end
=
this
->
contact_surfaces
.
end
();
// loop over contact nodes
for
(
UInt
i
=
0
;
i
<
2
*
nb_contact_nodes
;
++
i
)
{
// first round on masters, second round on slaves
UInt
node
=
std
::
numeric_limits
<
UInt
>::
quiet_NaN
();
UInt
n
=
0
;
UInt
index
=
0
;
if
(
i
<
nb_contact_nodes
)
{
n
=
i
;
node
=
this
->
masters
(
n
);
index
=
0
;
}
else
{
n
=
i
-
nb_contact_nodes
;
node
=
this
->
slaves
(
n
);
index
=
1
;
}
CSR
<
UInt
>::
iterator
elem
=
node_to_element
.
begin
(
node
);
// loop over all elements connected to this node
for
(;
elem
!=
node_to_element
.
end
(
node
);
++
elem
)
{
UInt
e
=
*
elem
;
// if element is not at interface continue
pos
=
this
->
contact_surfaces
.
find
(
surface_id
(
e
));
if
(
pos
==
end
)
continue
;
// loop over all points of this element
for
(
UInt
q
=
0
;
q
<
nb_nodes_per_element
;
++
q
)
{
if
(
connectivity
(
e
,
q
)
==
node
)
{
this
->
lumped_boundary
(
n
,
index
)
+=
area
(
e
,
q
);
}
}
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
computeContactPressure
()
{
AKANTU_DEBUG_IN
();
UInt
dim
=
this
->
model
.
getSpatialDimension
();
Real
delta_t
=
this
->
model
.
getTimeStep
();
UInt
nb_ntn_pairs
=
getNbContactNodes
();
// pre-compute the acceleration
// (not increment acceleration, because residual is still Kf)
Array
<
Real
>
acceleration
(
this
->
model
.
getFEM
().
getMesh
().
getNbNodes
(),
dim
);
this
->
model
.
solveLumped
(
acceleration
,
this
->
model
.
getMass
(),
this
->
model
.
getResidual
(),
this
->
model
.
getBoundary
(),
this
->
model
.
getF_M2A
());
const
Array
<
Real
>
&
residual
=
this
->
model
.
getResidual
();
/*
for (UInt i=0; i<nb_ntn_pairs; ++i) {
std::cout << "Master residual = " << residual(masters(i),0) << ", " << residual(masters(i),1) << std::endl;
std::cout << "Master acceleration = " << acceleration(masters(i),0) << ", " << acceleration(masters(i),1) << std::endl;
std::cout << "Slave residual = " << residual(slaves(i),0) << ", " << residual(slaves(i),1) << std::endl;
std::cout << "Slave acceleration = " << acceleration(slaves(i),0) << ", " << acceleration(slaves(i),1) << std::endl;
}
*/
// compute relative normal fields of displacement, velocity and acceleration
Array
<
Real
>
r_disp
(
0
,
1
);
Array
<
Real
>
r_velo
(
0
,
1
);
Array
<
Real
>
r_acce
(
0
,
1
);
Array
<
Real
>
r_old_acce
(
0
,
1
);
computeRelativeNormalField
(
this
->
model
.
getCurrentPosition
(),
r_disp
);
computeRelativeNormalField
(
this
->
model
.
getVelocity
(),
r_velo
);
computeRelativeNormalField
(
acceleration
,
r_acce
);
computeRelativeNormalField
(
this
->
model
.
getAcceleration
(),
r_old_acce
);
AKANTU_DEBUG_ASSERT
(
r_disp
.
getSize
()
==
nb_ntn_pairs
,
"computeRelativeNormalField does not give back arrays "
<<
"size == nb_ntn_pairs. nb_ntn_pairs = "
<<
nb_ntn_pairs
<<
" | array size = "
<<
r_disp
.
getSize
());
// compute gap array for all nodes
Array
<
Real
>
gap
(
nb_ntn_pairs
,
1
);
Real
*
gap_p
=
gap
.
storage
();
Real
*
r_disp_p
=
r_disp
.
storage
();
Real
*
r_velo_p
=
r_velo
.
storage
();
Real
*
r_acce_p
=
r_acce
.
storage
();
Real
*
r_old_acce_p
=
r_old_acce
.
storage
();
for
(
UInt
i
=
0
;
i
<
nb_ntn_pairs
;
++
i
)
{
//std::cout << "gap elements: " << *r_disp_p << " " << *r_velo_p << " " << *r_acce_p << std::endl;
*
gap_p
=
*
r_disp_p
+
delta_t
*
*
r_velo_p
+
delta_t
*
delta_t
*
*
r_acce_p
-
0.5
*
delta_t
*
delta_t
*
*
r_old_acce_p
;
// increment pointers
gap_p
++
;
r_disp_p
++
;
r_velo_p
++
;
r_acce_p
++
;
r_old_acce_p
++
;
}
// check if gap is negative -> is in contact
for
(
UInt
n
=
0
;
n
<
nb_ntn_pairs
;
++
n
)
{
if
(
gap
(
n
)
<
0.
)
{
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
this
->
contact_pressure
(
n
,
d
)
=
this
->
impedance
(
n
)
*
gap
(
n
)
/
(
2
*
delta_t
)
*
this
->
normals
(
n
,
d
);
}
this
->
is_in_contact
(
n
)
=
true
;
}
else
{
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
this
->
contact_pressure
(
n
,
d
)
=
0.
;
this
->
is_in_contact
(
n
)
=
false
;
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
applyContactPressure
()
{
AKANTU_DEBUG_IN
();
UInt
nb_ntn_pairs
=
getNbContactNodes
();
UInt
dim
=
this
->
model
.
getSpatialDimension
();
Array
<
Real
>
&
residual
=
this
->
model
.
getResidual
();
for
(
UInt
n
=
0
;
n
<
nb_ntn_pairs
;
++
n
)
{
UInt
master
=
this
->
masters
(
n
);
UInt
slave
=
this
->
slaves
(
n
);
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
//if (n==0 && d==1) std::cout << std::setprecision(14) << "mas_res=" << residual(master,d) << " slv_res=" << residual(slave,d) << " " << std::abs(residual(slave,d))-std::abs(residual(master,d)) << std::endl;
residual
(
master
,
d
)
+=
this
->
lumped_boundary
(
n
,
0
)
*
this
->
contact_pressure
(
n
,
d
);
residual
(
slave
,
d
)
-=
this
->
lumped_boundary
(
n
,
1
)
*
this
->
contact_pressure
(
n
,
d
);
/*
if (n==0 && d==1) {
std::cout << std::setprecision(14) << "mas_b=" << lumped_boundary(n,0) << " skv_b=" << lumped_boundary(n,1) << std::endl;
std::cout << std::setprecision(14) << "mas+=" << lumped_boundary(n,0)*contact_pressure(n,d) << " slv+=" << lumped_boundary(n,1)*contact_pressure(n,d) << std::endl;
std::cout << std::setprecision(14) << "mas_res=" << residual(master,d) << " slv_res=" << residual(slave,d) << std::endl;
}*/
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
computeRelativeTangentialField
(
const
Array
<
Real
>
&
field
,
Array
<
Real
>
&
rel_tang_field
)
const
{
AKANTU_DEBUG_IN
();
// resize arrays to zero
rel_tang_field
.
resize
(
0
);
UInt
dim
=
this
->
model
.
getSpatialDimension
();
Real
*
field_p
=
field
.
storage
();
Real
*
normals_p
=
this
->
normals
.
storage
();
UInt
nb_contact_nodes
=
this
->
slaves
.
getSize
();
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
// nodes
UInt
slave
=
this
->
slaves
(
n
);
UInt
master
=
this
->
masters
(
n
);
// compute relative field to master
Real
rel_array
[
dim
];
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
rel_array
[
d
]
=
field_p
[
slave
*
dim
+
d
]
-
field_p
[
master
*
dim
+
d
];
}
// compute dot product with normal of master
Real
dot_prod
=
Math
::
vectorDot
(
&
(
normals_p
[
n
*
dim
]),
rel_array
,
dim
);
// compute the tangential projection of the relative field to the master
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
rel_array
[
d
]
-=
dot_prod
*
normals_p
[
n
*
dim
+
d
];
rel_tang_field
.
push_back
(
rel_array
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
computeRelativeNormalField
(
const
Array
<
Real
>
&
field
,
Array
<
Real
>
&
rel_normal_field
)
const
{
AKANTU_DEBUG_IN
();
// resize arrays to zero
rel_normal_field
.
resize
(
0
);
UInt
dim
=
this
->
model
.
getSpatialDimension
();
Real
*
field_p
=
field
.
storage
();
Real
*
normals_p
=
this
->
normals
.
storage
();
UInt
nb_contact_nodes
=
this
->
getNbContactNodes
();
for
(
UInt
n
=
0
;
n
<
nb_contact_nodes
;
++
n
)
{
// nodes
UInt
slave
=
this
->
slaves
(
n
);
UInt
master
=
this
->
masters
(
n
);
// compute relative field to master
Real
rel_array
[
dim
];
for
(
UInt
d
=
0
;
d
<
dim
;
++
d
)
{
rel_array
[
d
]
=
field_p
[
slave
*
dim
+
d
]
-
field_p
[
master
*
dim
+
d
];
}
// compute dot product with normal of master
Real
dot_prod
=
Math
::
vectorDot
(
&
(
normals_p
[
n
*
dim
]),
rel_array
,
dim
);
rel_normal_field
.
push_back
(
dot_prod
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Int
NTNContact
::
getNodeIndex
(
UInt
node
)
const
{
AKANTU_DEBUG_IN
();
Int
slave_i
=
this
->
slaves
.
find
(
node
);
Int
master_i
=
this
->
masters
.
find
(
node
);
AKANTU_DEBUG_OUT
();
return
std
::
max
(
slave_i
,
master_i
);
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
AKANTU_DEBUG_IN
();
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
);
stream
<<
space
<<
"NTNContact ["
<<
std
::
endl
;
stream
<<
space
<<
" + id : "
<<
id
<<
std
::
endl
;
stream
<<
space
<<
" + slaves : "
<<
std
::
endl
;
this
->
slaves
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" + masters : "
<<
std
::
endl
;
this
->
masters
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" + normals : "
<<
std
::
endl
;
this
->
normals
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" + contact_pressure : "
<<
std
::
endl
;
this
->
contact_pressure
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
NTNContact
::
syncArrays
(
SyncChoice
sync_choice
)
{
AKANTU_DEBUG_IN
();
this
->
slaves
.
syncElements
(
sync_choice
);
this
->
masters
.
syncElements
(
sync_choice
);
this
->
normals
.
syncElements
(
sync_choice
);
this
->
is_in_contact
.
syncElements
(
sync_choice
);
this
->
contact_pressure
.
syncElements
(
sync_choice
);
this
->
lumped_boundary
.
syncElements
(
sync_choice
);
this
->
impedance
.
syncElements
(
sync_choice
);
AKANTU_DEBUG_OUT
();
}
__END_SIMTOOLS__
Event Timeline
Log In to Comment