Page MenuHomec4science

mesh_iterators.hh
No OneTemporary

File Metadata

Created
Thu, Nov 14, 03:21

mesh_iterators.hh

/**
* @file mesh_iterators.hh
*
* @author Nicolas Richart
*
* @date creation Wed Aug 09 2017
*
* @brief Set of helper classes to have fun with range based for
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_named_argument.hh"
#include "aka_static_if.hh"
#include "mesh.hh"
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_MESH_ITERATORS_HH__
#define __AKANTU_MESH_ITERATORS_HH__
namespace akantu {
class MeshElementsByTypes {
using elements_iterator = Array<Element>::scalar_iterator;
public:
explicit MeshElementsByTypes(const Array<Element> & elements) {
this->elements.copy(elements);
std::sort(this->elements.begin(), this->elements.end());
}
/* ------------------------------------------------------------------------ */
class MeshElementsRange {
public:
MeshElementsRange() = default;
MeshElementsRange(const elements_iterator & begin,
const elements_iterator & end)
: type((*begin).type), ghost_type((*begin).ghost_type), begin(begin),
end(end) {}
AKANTU_GET_MACRO(Type, type, const ElementType &);
AKANTU_GET_MACRO(GhostType, ghost_type, const GhostType &);
const Array<UInt> & getElements() {
elements.resize(end - begin);
auto el_it = elements.begin();
for (auto it = begin; it != end; ++it, ++el_it) {
*el_it = it->element;
}
return elements;
}
private:
ElementType type{_not_defined};
GhostType ghost_type{_casper};
elements_iterator begin;
elements_iterator end;
Array<UInt> elements;
};
/* ------------------------------------------------------------------------ */
class iterator {
struct element_comparator {
bool operator()(const Element & lhs, const Element & rhs) const {
return ((rhs == ElementNull) || std::tie(lhs.ghost_type, lhs.type) <
std::tie(rhs.ghost_type, rhs.type));
}
};
public:
iterator(const iterator &) = default;
iterator(const elements_iterator & first, const elements_iterator & last)
: range(std::equal_range(first, last, *first, element_comparator())),
first(first), last(last) {}
decltype(auto) operator*() const {
return MeshElementsRange(range.first, range.second);
}
iterator operator++() {
first = range.second;
range = std::equal_range(first, last, *first, element_comparator());
return *this;
}
bool operator==(const iterator & other) const {
return (first == other.first and last == other.last);
}
bool operator!=(const iterator & other) const {
return (not operator==(other));
}
private:
std::pair<elements_iterator, elements_iterator> range;
elements_iterator first;
elements_iterator last;
};
iterator begin() { return iterator(elements.begin(), elements.end()); }
iterator end() { return iterator(elements.end(), elements.end()); }
private:
Array<Element> elements;
};
/* -------------------------------------------------------------------------- */
namespace mesh_iterators {
namespace details {
template <class internal_iterator> class delegated_iterator {
public:
using value_type = std::remove_pointer_t<
typename internal_iterator::value_type::second_type>;
using pointer = value_type *;
using reference = value_type &;
using iterator_category = std::input_iterator_tag;
explicit delegated_iterator(internal_iterator it) : it(std::move(it)) {}
decltype(auto) operator*() {
return std::forward<decltype(*(it->second))>(*(it->second));
}
delegated_iterator operator++() {
++it;
return *this;
}
bool operator==(const delegated_iterator & other) const {
return other.it == it;
}
bool operator!=(const delegated_iterator & other) const {
return other.it != it;
}
private:
internal_iterator it;
};
template <class GroupManager> class ElementGroupsIterable {
public:
explicit ElementGroupsIterable(GroupManager && group_manager)
: group_manager(std::forward<GroupManager>(group_manager)) {}
size_t size() { return group_manager.getNbElementGroups(); }
decltype(auto) begin() {
return delegated_iterator<decltype(
group_manager.element_group_begin())>(
group_manager.element_group_begin());
}
decltype(auto) begin() const {
return delegated_iterator<decltype(
group_manager.element_group_begin())>(
group_manager.element_group_begin());
}
decltype(auto) end() {
return delegated_iterator<decltype(group_manager.element_group_end())>(
group_manager.element_group_end());
}
decltype(auto) end() const {
return delegated_iterator<decltype(group_manager.element_group_end())>(
group_manager.element_group_end());
}
private:
GroupManager && group_manager;
};
template <class GroupManager> class NodeGroupsIterable {
public:
explicit NodeGroupsIterable(GroupManager && group_manager)
: group_manager(std::forward<GroupManager>(group_manager)) {}
size_t size() { return group_manager.getNbNodeGroups(); }
decltype(auto) begin() {
return delegated_iterator<decltype(group_manager.node_group_begin())>(
group_manager.node_group_begin());
}
decltype(auto) begin() const {
return delegated_iterator<decltype(group_manager.node_group_begin())>(
group_manager.node_group_begin());
}
decltype(auto) end() {
return delegated_iterator<decltype(group_manager.node_group_end())>(
group_manager.node_group_end());
}
decltype(auto) end() const {
return delegated_iterator<decltype(group_manager.node_group_end())>(
group_manager.node_group_end());
}
private:
GroupManager && group_manager;
};
} // namespace details
} // namespace mesh_iterators
template <class GroupManager>
decltype(auto) ElementGroupsIterable(GroupManager && group_manager) {
return mesh_iterators::details::ElementGroupsIterable<GroupManager>(
group_manager);
}
template <class GroupManager>
decltype(auto) NodeGroupsIterable(GroupManager && group_manager) {
return mesh_iterators::details::NodeGroupsIterable<GroupManager>(
group_manager);
}
/* -------------------------------------------------------------------------- */
template <class Func>
void for_each_elements(UInt nb_elements, const Array<UInt> & filter_elements,
Func && function) {
if (filter_elements != empty_filter) {
std::for_each(filter_elements.begin(), filter_elements.end(),
std::forward<Func>(function));
} else {
auto && range = arange(nb_elements);
std::for_each(range.begin(), range.end(), std::forward<Func>(function));
}
}
namespace {
DECLARE_NAMED_ARGUMENT(element_filter);
}
/* -------------------------------------------------------------------------- */
template <class Func, typename... pack>
void for_each_elements(const Mesh & mesh, Func && function, pack &&... _pack) {
auto && requested_ghost_type = OPTIONAL_NAMED_ARG(ghost_type, _casper);
auto && filter = OPTIONAL_NAMED_ARG(element_filter, nullptr);
bool all_ghost_types = requested_ghost_type == _casper;
auto && spatial_dimension =
OPTIONAL_NAMED_ARG(spatial_dimension, mesh.getSpatialDimension());
auto && element_kind = OPTIONAL_NAMED_ARG(element_kind, _ek_not_defined);
for (auto ghost_type : ghost_types) {
if ((not(ghost_type == requested_ghost_type)) and (not all_ghost_types))
continue;
auto element_types =
mesh.elementTypes(spatial_dimension, ghost_type, element_kind);
static_if(not std::is_same<decltype(filter), std::nullptr_t>::value)
.then([&](auto && element_types) {
element_types =
filter->elementTypes(spatial_dimension, ghost_type, element_kind);
})(std::forward<decltype(element_types)>(element_types));
for (auto type : element_types) {
const Array<UInt> * filter_array;
static_if(not std::is_same<decltype(filter), std::nullptr_t>::value)
.then([&](auto && array) { array = &((*filter)(type, ghost_type)); })
.else_([&](auto && array) { array = &empty_filter; })(
std::forward<const Array<UInt> *>(filter_array));
auto nb_elements = mesh.getNbElement(type, ghost_type);
for_each_elements(nb_elements, *filter_array, [&](auto && el) {
auto element = Element{type, el, ghost_type};
std::forward<Func>(function)(element);
});
}
}
}
} // namespace akantu
#endif /* __AKANTU_MESH_ITERATORS_HH__ */

Event Timeline