Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F98059595
fluid_diffusion_model.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Jan 9, 04:27
Size
14 KB
Mime Type
text/x-c++
Expires
Sat, Jan 11, 04:27 (2 d)
Engine
blob
Format
Raw Data
Handle
23491121
Attached To
rAKA akantu
fluid_diffusion_model.hh
View Options
/**
* @file fluid_diffusion_model.hh
*
* @author Emil Gallyamov <emil.gallyamov@epfl.ch>
*
* @date creation: Aug 2019
*
* @brief Transient fluid diffusion model based on the Heat Transfer Model
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "data_accessor.hh"
#include "fe_engine.hh"
#include "fluid_diffusion_model_event_handler.hh"
#include "model.hh"
#if defined(AKANTU_COHESIVE_ELEMENT)
#include "material_cohesive.hh"
#include "solid_mechanics_model_cohesive.hh"
#endif
/* -------------------------------------------------------------------------- */
#include <array>
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_FLUID_DIFFUSION_MODEL_HH__
#define __AKANTU_FLUID_DIFFUSION_MODEL_HH__
namespace
akantu
{
template
<
ElementKind
kind
,
class
IntegrationOrderFunctor
>
class
IntegratorGauss
;
template
<
ElementKind
kind
>
class
ShapeLagrange
;
}
// namespace akantu
namespace
akantu
{
class
FluidDiffusionModel
:
public
Model
,
public
DataAccessor
<
Element
>
,
public
DataAccessor
<
UInt
>
,
public
EventHandlerManager
<
FluidDiffusionModelEventHandler
>
{
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public
:
using
FEEngineType
=
FEEngineTemplate
<
IntegratorGauss
,
ShapeLagrange
>
;
FluidDiffusionModel
(
Mesh
&
mesh
,
UInt
dim
=
_all_dimensions
,
const
ID
&
id
=
"fluid_diffusion_model"
);
~
FluidDiffusionModel
()
override
;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
protected
:
/// generic function to initialize everything ready for explicit dynamics
void
initFullImpl
(
const
ModelOptions
&
options
)
override
;
/// read one material file to instantiate all the materials
void
readMaterials
();
/// allocate all vectors
void
initSolver
(
TimeStepSolverType
,
NonLinearSolverType
)
override
;
/// initialize the model
void
initModel
()
override
;
void
predictor
()
override
;
/// callback for the solver, this is called at end of solve
void
afterSolveStep
(
bool
is_converged
=
false
)
override
;
/// compute the heat flux
void
assembleResidual
()
override
;
/// get the type of matrix needed
MatrixType
getMatrixType
(
const
ID
&
);
/// callback to assemble a Matrix
void
assembleMatrix
(
const
ID
&
)
override
;
/// callback to assemble a lumped Matrix
void
assembleLumpedMatrix
(
const
ID
&
)
override
;
std
::
tuple
<
ID
,
TimeStepSolverType
>
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
override
;
ModelSolverOptions
getDefaultSolverOptions
(
const
TimeStepSolverType
&
type
)
const
override
;
/// resize all fields on nodes added event
void
resizeFields
();
public
:
/// get coordinates of qpoints in same order as other elemental fields
Array
<
Real
>
getQpointsCoord
();
#ifdef AKANTU_COHESIVE_ELEMENT
/// get apperture at nodes from displacement field of cohesive model
void
getApertureOnQpointsFromCohesive
(
const
SolidMechanicsModelCohesive
&
coh_model
,
bool
first_time
=
false
);
/// insert fluid elements based on cohesive elements and their damage
void
updateFluidElementsFromCohesive
(
const
SolidMechanicsModelCohesive
&
coh_model
);
#endif
void
applyExternalFluxAtElementGroup
(
const
Real
&
rate
,
const
ElementGroup
&
source_facets
,
GhostType
ghost_type
=
_not_ghost
);
void
injectIntoFacetsByCoord
(
const
Vector
<
Real
>
&
position
,
const
Real
&
injection_rate
);
/* ------------------------------------------------------------------------ */
/* Methods for explicit */
/* ------------------------------------------------------------------------ */
public
:
/// compute and get the stable time step
Real
getStableTimeStep
();
/// set the stable timestep
void
setTimeStep
(
Real
dt
,
const
ID
&
solver_id
=
""
)
override
;
// temporary protection to prevent bad usage: should check for bug
protected
:
/// compute the internal heat flux \todo Need code review: currently not
/// public method
void
assembleInternalFlux
();
public
:
/// calculate the lumped capacity vector for heat transfer problem
void
assembleCapacityLumped
();
/* ------------------------------------------------------------------------ */
/* Mesh Event Handler inherited members */
/* ------------------------------------------------------------------------ */
protected
:
void
onElementsAdded
(
const
Array
<
Element
>
&
element_list
,
const
NewElementsEvent
&
/*event*/
)
override
;
/* ------------------------------------------------------------------------ */
/* Methods for static */
/* ------------------------------------------------------------------------ */
public
:
/// assemble the conductivity matrix
void
assemblePermeabilityMatrix
();
/// assemble the conductivity matrix
void
assembleCapacity
();
/// compute the capacity on quadrature points
void
computeRho
(
Array
<
Real
>
&
rho
,
ElementType
type
,
GhostType
ghost_type
);
private
:
/// calculate the lumped capacity vector for heat transfer problem (w
/// ghost type)
void
assembleCapacityLumped
(
const
GhostType
&
ghost_type
);
/// assemble the conductivity matrix (w/ ghost type)
void
assemblePermeabilityMatrix
(
const
GhostType
&
ghost_type
);
/// compute the conductivity tensor for each quadrature point in an array
void
computePermeabilityOnQuadPoints
(
const
GhostType
&
ghost_type
);
/// compute vector k \grad T for each quadrature point
void
computeKgradP
(
const
GhostType
&
ghost_type
);
/// compute the thermal energy
Real
computeThermalEnergyByNode
();
/* ------------------------------------------------------------------------ */
/* Data Accessor inherited members */
/* ------------------------------------------------------------------------ */
public
:
inline
UInt
getNbData
(
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
override
;
inline
void
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
override
;
inline
void
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
override
;
inline
UInt
getNbData
(
const
Array
<
UInt
>
&
indexes
,
const
SynchronizationTag
&
tag
)
const
override
;
inline
void
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
UInt
>
&
indexes
,
const
SynchronizationTag
&
tag
)
const
override
;
inline
void
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
UInt
>
&
indexes
,
const
SynchronizationTag
&
tag
)
override
;
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public
:
std
::
shared_ptr
<
dumpers
::
Field
>
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
)
override
;
std
::
shared_ptr
<
dumpers
::
Field
>
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
)
override
;
std
::
shared_ptr
<
dumpers
::
Field
>
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
,
UInt
spatial_dimension
,
ElementKind
kind
)
override
;
virtual
void
dump
(
const
std
::
string
&
dumper_name
);
virtual
void
dump
(
const
std
::
string
&
dumper_name
,
UInt
step
);
virtual
void
dump
(
const
std
::
string
&
dumper_name
,
Real
time
,
UInt
step
);
void
dump
()
override
;
virtual
void
dump
(
UInt
step
);
virtual
void
dump
(
Real
time
,
UInt
step
);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public
:
AKANTU_GET_MACRO
(
Compressibility
,
compressibility
,
Real
);
AKANTU_GET_MACRO
(
Pushability
,
pushability
,
Real
);
/// get the dimension of the system space
AKANTU_GET_MACRO
(
SpatialDimension
,
spatial_dimension
,
UInt
);
/// get the current value of the time step
AKANTU_GET_MACRO
(
TimeStep
,
time_step
,
Real
);
/// get the assembled heat flux
AKANTU_GET_MACRO
(
InternalFlux
,
*
internal_flux
,
Array
<
Real
>
&
);
/// get the boundary vector
AKANTU_GET_MACRO
(
BlockedDOFs
,
*
blocked_dofs
,
Array
<
bool
>
&
);
/// get the external heat rate vector
AKANTU_GET_MACRO
(
ExternalFlux
,
*
external_flux
,
Array
<
Real
>
&
);
/// get the temperature gradient
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
PressureGradient
,
pressure_gradient
,
Real
);
/// get the permeability on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
PermeabilityOnQpoints
,
permeability_on_qpoints
,
Real
);
/// get the pressure on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
PressureOnQpoints
,
pressure_on_qpoints
,
Real
);
/// get the pressure change on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
DeltaPressureOnQpoints
,
delta_pres_on_qpoints
,
Real
);
/// get the aperture on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
ApertureOnQpoints
,
aperture_on_qpoints
,
Real
);
/// get the aperture on q points
AKANTU_GET_MACRO_BY_ELEMENT_TYPE
(
ApertureOnQpoints
,
aperture_on_qpoints
,
Real
);
/// internal variables
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
KgradP
,
k_gradp_on_qpoints
,
Real
);
/// get the temperature
AKANTU_GET_MACRO
(
Pressure
,
*
pressure
,
Array
<
Real
>
&
);
/// get the temperature derivative
AKANTU_GET_MACRO
(
PressureRate
,
*
pressure_rate
,
Array
<
Real
>
&
);
inline
bool
isModelVelocityDependent
()
const
{
return
use_aperture_speed
;
}
// /// get the energy denominated by thermal
// Real getEnergy(const std::string & energy_id, const ElementType & type,
// UInt index);
// /// get the energy denominated by thermal
// Real getEnergy(const std::string & energy_id);
// /// get the thermal energy for a given element
// Real getThermalEnergy(const ElementType & type, UInt index);
// /// get the thermal energy for a given element
// Real getThermalEnergy();
protected
:
/* ------------------------------------------------------------------------ */
FEEngine
&
getFEEngineBoundary
(
const
ID
&
name
=
""
)
override
;
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private
:
/// number of iterations
UInt
n_iter
;
/// time step
Real
time_step
;
/// pressure array
std
::
unique_ptr
<
Array
<
Real
>>
pressure
;
/// pressure derivatives array
std
::
unique_ptr
<
Array
<
Real
>>
pressure_rate
;
// /// increment array (@f$\delta \dot P@f$ or @f$\delta P@f$)
// Array<Real> * increment{nullptr};
/// the speed of the changing temperature
ElementTypeMapArray
<
Real
>
pressure_gradient
;
/// pressure field on quadrature points
ElementTypeMapArray
<
Real
>
pressure_on_qpoints
;
/// pressure change on quadrature points
ElementTypeMapArray
<
Real
>
delta_pres_on_qpoints
;
/// conductivity tensor on quadrature points
ElementTypeMapArray
<
Real
>
permeability_on_qpoints
;
/// aperture on quadrature points
ElementTypeMapArray
<
Real
>
aperture_on_qpoints
;
/// aperture on quadrature points
ElementTypeMapArray
<
Real
>
prev_aperture_on_qpoints
;
/// vector k \grad T on quad points
ElementTypeMapArray
<
Real
>
k_gradp_on_qpoints
;
/// external flux vector
std
::
unique_ptr
<
Array
<
Real
>>
external_flux
;
/// residuals array
std
::
unique_ptr
<
Array
<
Real
>>
internal_flux
;
/// boundary vector
std
::
unique_ptr
<
Array
<
bool
>>
blocked_dofs
;
// viscosity
Real
viscosity
{
0.
};
/// compressibility Cf = 1/pho drho/dP
Real
compressibility
{
0.
};
// default value of aperture on a newly added nodesynchronizer
Real
default_aperture
{
0.
};
bool
need_to_reassemble_capacity
{
true
};
bool
need_to_reassemble_capacity_lumped
{
true
};
UInt
pressure_release
{
0
};
UInt
solution_release
{
0
};
UInt
permeability_matrix_release
{
0
};
std
::
unordered_map
<
GhostType
,
bool
>
initial_permeability
{{
_not_ghost
,
true
},
{
_ghost
,
true
}};
std
::
unordered_map
<
GhostType
,
UInt
>
permeability_release
{{
_not_ghost
,
0
},
{
_ghost
,
0
}};
bool
use_aperture_speed
{
false
};
// pushability Ch = 1/h dh/dP
Real
pushability
{
0.
};
// damage at which cohesive element will be duplicated in fluid mesh
Real
insertion_damage
{
0.
};
};
}
// namespace akantu
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
#include "fluid_diffusion_model_inline_impl.hh"
#endif
/* __AKANTU_FLUID_DIFFUSION_MODEL_HH__ */
Event Timeline
Log In to Comment