Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94223587
implicit_dynamic.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 21:38
Size
4 KB
Mime Type
text/x-c
Expires
Fri, Dec 6, 21:38 (2 d)
Engine
blob
Format
Raw Data
Handle
22367300
Attached To
rAKA akantu
implicit_dynamic.cc
View Options
/**
* @file implicit_dynamic.cc
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Sun Oct 19 2014
*
* @brief This code refers to the implicit dynamic example from the user manual
*
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "communicator.hh"
#include "non_linear_solver.hh"
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
#include <fstream>
/* -------------------------------------------------------------------------- */
using
namespace
akantu
;
/* -------------------------------------------------------------------------- */
const
Real
bar_length
=
10.
;
const
Real
bar_height
=
1.
;
const
Real
bar_depth
=
1.
;
const
Real
F
=
5e3
;
const
Real
L
=
bar_length
;
const
Real
I
=
bar_depth
*
bar_height
*
bar_height
*
bar_height
/
12.
;
const
Real
E
=
12e7
;
const
Real
rho
=
1000
;
const
Real
m
=
rho
*
bar_height
*
bar_depth
;
static
Real
w
(
UInt
n
)
{
return
n
*
n
*
M_PI
*
M_PI
/
(
L
*
L
)
*
sqrt
(
E
*
I
/
m
);
}
static
Real
analytical_solution
(
Real
time
)
{
return
2
*
F
*
L
*
L
*
L
/
(
pow
(
M_PI
,
4
)
*
E
*
I
)
*
((
1.
-
cos
(
w
(
1
)
*
time
))
+
(
1.
-
cos
(
w
(
3
)
*
time
))
/
81.
+
(
1.
-
cos
(
w
(
5
)
*
time
))
/
625.
);
}
const
UInt
spatial_dimension
=
2
;
const
Real
time_step
=
1e-4
;
const
Real
max_time
=
0.62
;
/* -------------------------------------------------------------------------- */
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
"material_dynamic.dat"
,
argc
,
argv
);
Mesh
mesh
(
spatial_dimension
);
const
auto
&
comm
=
Communicator
::
getStaticCommunicator
();
Int
prank
=
comm
.
whoAmI
();
if
(
prank
==
0
)
mesh
.
read
(
"beam.msh"
);
mesh
.
distribute
();
SolidMechanicsModel
model
(
mesh
);
/// model initialization
model
.
initFull
(
_analysis_method
=
_implicit_dynamic
);
Material
&
mat
=
model
.
getMaterial
(
0
);
mat
.
setParam
(
"E"
,
E
);
mat
.
setParam
(
"rho"
,
rho
);
Array
<
Real
>
&
force
=
model
.
getExternalForce
();
Array
<
Real
>
&
displacment
=
model
.
getDisplacement
();
// boundary conditions
model
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.0
,
_x
),
"blocked"
);
model
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.0
,
_y
),
"blocked"
);
model
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.0
,
_y
),
"roller"
);
const
Array
<
UInt
>
&
trac_nodes
=
mesh
.
getElementGroup
(
"traction"
).
getNodeGroup
().
getNodes
();
bool
dump_node
=
false
;
if
(
trac_nodes
.
size
()
>
0
&&
mesh
.
isLocalOrMasterNode
(
trac_nodes
(
0
)))
{
force
(
trac_nodes
(
0
),
1
)
=
F
;
dump_node
=
true
;
}
// output setup
std
::
ofstream
pos
;
pos
.
open
(
"position.csv"
);
if
(
!
pos
.
good
())
AKANTU_ERROR
(
"Cannot open file
\"
position.csv
\"
"
);
pos
<<
"id,time,position,solution"
<<
std
::
endl
;
model
.
setBaseName
(
"dynamic"
);
model
.
addDumpFieldVector
(
"displacement"
);
model
.
addDumpField
(
"velocity"
);
model
.
addDumpField
(
"acceleration"
);
model
.
addDumpField
(
"external_force"
);
model
.
addDumpField
(
"internal_force"
);
model
.
dump
();
model
.
setTimeStep
(
time_step
);
auto
&
solver
=
model
.
getNonLinearSolver
();
solver
.
set
(
"max_iterations"
,
100
);
solver
.
set
(
"threshold"
,
1e-12
);
solver
.
set
(
"convergence_type"
,
SolveConvergenceCriteria
::
_solution
);
/// time loop
Real
time
=
0.
;
for
(
UInt
s
=
1
;
time
<
max_time
;
++
s
,
time
+=
time_step
)
{
if
(
prank
==
0
)
std
::
cout
<<
s
<<
"
\r
"
<<
std
::
flush
;
model
.
solveStep
();
if
(
dump_node
)
pos
<<
s
<<
","
<<
time
<<
","
<<
displacment
(
trac_nodes
(
0
),
1
)
<<
","
<<
analytical_solution
(
s
*
time_step
)
<<
std
::
endl
;
if
(
s
%
100
==
0
)
model
.
dump
();
}
std
::
cout
<<
std
::
endl
;
pos
.
close
();
finalize
();
return
EXIT_SUCCESS
;
}
Event Timeline
Log In to Comment