Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99264587
shape_cohesive_inline_impl.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Jan 22, 21:55
Size
10 KB
Mime Type
text/x-c++
Expires
Fri, Jan 24, 21:55 (2 d)
Engine
blob
Format
Raw Data
Handle
23723268
Attached To
rAKA akantu
shape_cohesive_inline_impl.cc
View Options
/**
* @file shape_cohesive_inline_impl.cc
*
* @author Marco Vocialta <marco.vocialta@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Thu Feb 23 2012
* @date last modification: Fri Jun 13 2014
*
* @brief ShapeCohesive inline implementation
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
inline
ShapeLagrange
<
_ek_cohesive
>::
ShapeLagrange
(
const
Mesh
&
mesh
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
ShapeFunctions
(
mesh
,
id
,
memory_id
),
shapes
(
"shapes_cohesive"
,
id
),
shapes_derivatives
(
"shapes_derivatives_cohesive"
,
id
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
#define INIT_SHAPE_FUNCTIONS(type) \
setControlPointsByType<type>(control_points, ghost_type); \
precomputeShapesOnControlPoints<type>(nodes, ghost_type); \
precomputeShapeDerivativesOnControlPoints<type>(nodes, ghost_type);
/* -------------------------------------------------------------------------- */
inline
void
ShapeLagrange
<
_ek_cohesive
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
control_points
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
AKANTU_BOOST_COHESIVE_ELEMENT_SWITCH
(
INIT_SHAPE_FUNCTIONS
);
}
/* -------------------------------------------------------------------------- */
inline
const
Array
<
Real
>
&
ShapeLagrange
<
_ek_cohesive
>::
getShapes
(
const
ElementType
&
el_type
,
const
GhostType
&
ghost_type
)
const
{
return
shapes
(
FEEngine
::
getInterpolationType
(
el_type
),
ghost_type
);
}
/* -------------------------------------------------------------------------- */
inline
const
Array
<
Real
>
&
ShapeLagrange
<
_ek_cohesive
>::
getShapesDerivatives
(
const
ElementType
&
el_type
,
const
GhostType
&
ghost_type
)
const
{
return
shapes_derivatives
(
FEEngine
::
getInterpolationType
(
el_type
),
ghost_type
);
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
precomputeShapesOnControlPoints
(
__attribute__
((
unused
))
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Matrix
<
Real
>
&
natural_coords
=
control_points
(
type
,
ghost_type
);
UInt
nb_points
=
natural_coords
.
cols
();
UInt
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
UInt
nb_element
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
getSize
();;
Array
<
Real
>
&
shapes_tmp
=
shapes
.
alloc
(
nb_element
*
nb_points
,
size_of_shapes
,
itp_type
,
ghost_type
);
Array
<
Real
>::
matrix_iterator
shapes_it
=
shapes_tmp
.
begin_reinterpret
(
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
(),
nb_points
,
nb_element
);
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
shapes_it
)
{
Matrix
<
Real
>
&
N
=
*
shapes_it
;
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
N
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
>
void
ShapeLagrange
<
_ek_cohesive
>::
precomputeShapeDerivativesOnControlPoints
(
__attribute__
((
unused
))
const
Array
<
Real
>
&
nodes
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
UInt
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
UInt
spatial_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Matrix
<
Real
>
natural_coords
=
this
->
control_points
(
type
,
ghost_type
);
UInt
nb_points
=
natural_coords
.
cols
();
// UInt * elem_val = this->mesh->getConnectivity(type, ghost_type).storage();;
UInt
nb_element
=
this
->
mesh
.
getConnectivity
(
type
,
ghost_type
).
getSize
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
Array
<
Real
>
&
shapes_derivatives_tmp
=
this
->
shapes_derivatives
.
alloc
(
nb_element
*
nb_points
,
size_of_shapesd
,
itp_type
,
ghost_type
);
Real
*
shapesd_val
=
shapes_derivatives_tmp
.
storage
();
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
)
{
Tensor3
<
Real
>
B
(
shapesd_val
,
spatial_dimension
,
nb_nodes_per_element
,
nb_points
);
ElementClass
<
type
>::
computeDNDS
(
natural_coords
,
B
);
shapesd_val
+=
size_of_shapesd
*
nb_points
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
extractNodalToElementField
(
const
Array
<
Real
>
&
nodal_f
,
Array
<
Real
>
&
elemental_f
,
const
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_nodes_per_itp_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
UInt
nb_degree_of_freedom
=
nodal_f
.
getNbComponent
();
UInt
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
*
conn_val
=
this
->
mesh
.
getConnectivity
(
type
,
ghost_type
).
storage
();
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
getSize
();
}
elemental_f
.
resize
(
nb_element
);
Array
<
Real
>::
matrix_iterator
u_it
=
elemental_f
.
begin
(
nb_degree_of_freedom
,
nb_nodes_per_itp_element
);
UInt
*
el_conn
;
ReduceFunction
reduce_function
;
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
u_it
)
{
Matrix
<
Real
>
&
u
=
*
u_it
;
if
(
filter_elements
!=
empty_filter
)
el_conn
=
conn_val
+
filter_elements
(
el
)
*
nb_nodes_per_element
;
else
el_conn
=
conn_val
+
el
*
nb_nodes_per_element
;
// compute the average/difference of the nodal field loaded from cohesive element
for
(
UInt
n
=
0
;
n
<
nb_nodes_per_itp_element
;
++
n
)
{
UInt
node_plus
=
*
(
el_conn
+
n
);
UInt
node_minus
=
*
(
el_conn
+
n
+
nb_nodes_per_itp_element
);
for
(
UInt
d
=
0
;
d
<
nb_degree_of_freedom
;
++
d
)
{
Real
u_plus
=
nodal_f
(
node_plus
,
d
);
Real
u_minus
=
nodal_f
(
node_minus
,
d
);
u
(
d
,
n
)
=
reduce_function
(
u_plus
,
u_minus
);
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
interpolateOnControlPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
this
->
shapes
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
this
->
shapes
.
printType
(
itp_type
,
ghost_type
));
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
this
->
extractNodalToElementField
<
type
,
ReduceFunction
>
(
in_u
,
u_el
,
ghost_type
,
filter_elements
);
this
->
template
interpolateElementalFieldOnControlPoints
<
type
>
(
u_el
,
out_uq
,
ghost_type
,
shapes
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
variationOnControlPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
nablauq
,
UInt
nb_degree_of_freedom
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
InterpolationType
itp_type
=
ElementClassProperty
<
type
>::
interpolation_type
;
AKANTU_DEBUG_ASSERT
(
this
->
shapes_derivatives
.
exists
(
itp_type
,
ghost_type
),
"No shapes for the type "
<<
this
->
shapes_derivatives
.
printType
(
itp_type
,
ghost_type
));
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerInterpolationElement
();
Array
<
Real
>
u_el
(
0
,
nb_degree_of_freedom
*
nb_nodes_per_element
);
this
->
extractNodalToElementField
<
type
,
ReduceFunction
>
(
in_u
,
u_el
,
ghost_type
,
filter_elements
);
this
->
template
gradientElementalFieldOnControlPoints
<
type
>
(
u_el
,
nablauq
,
ghost_type
,
shapes_derivatives
(
itp_type
,
ghost_type
),
filter_elements
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementType
type
,
class
ReduceFunction
>
void
ShapeLagrange
<
_ek_cohesive
>::
computeNormalsOnControlPoints
(
const
Array
<
Real
>
&
u
,
Array
<
Real
>
&
normals_u
,
GhostType
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_element
=
this
->
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_points
=
this
->
control_points
(
type
,
ghost_type
).
cols
();
UInt
spatial_dimension
=
this
->
mesh
.
getSpatialDimension
();
if
(
filter_elements
!=
empty_filter
)
nb_element
=
filter_elements
.
getSize
();
normals_u
.
resize
(
nb_points
*
nb_element
);
Array
<
Real
>
tangents_u
(
nb_element
*
nb_points
,
(
spatial_dimension
*
(
spatial_dimension
-
1
)));
this
->
template
variationOnControlPoints
<
type
,
ReduceFunction
>
(
u
,
tangents_u
,
spatial_dimension
,
ghost_type
,
filter_elements
);
Array
<
Real
>::
vector_iterator
normal
=
normals_u
.
begin
(
spatial_dimension
);
Array
<
Real
>::
vector_iterator
normal_end
=
normals_u
.
end
(
spatial_dimension
);
Real
*
tangent
=
tangents_u
.
storage
();
if
(
spatial_dimension
==
3
)
for
(;
normal
!=
normal_end
;
++
normal
)
{
Math
::
vectorProduct3
(
tangent
,
tangent
+
spatial_dimension
,
normal
->
storage
());
(
*
normal
)
/=
normal
->
norm
();
tangent
+=
spatial_dimension
*
2
;
}
else
if
(
spatial_dimension
==
2
)
for
(;
normal
!=
normal_end
;
++
normal
)
{
Vector
<
Real
>
a1
(
tangent
,
spatial_dimension
);
(
*
normal
)(
0
)
=
-
a1
(
1
);
(
*
normal
)(
1
)
=
a1
(
0
);
(
*
normal
)
/=
normal
->
norm
();
tangent
+=
spatial_dimension
;
}
AKANTU_DEBUG_OUT
();
}
Event Timeline
Log In to Comment