Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94147241
phasefield.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 4, 06:48
Size
10 KB
Mime Type
text/x-c
Expires
Fri, Dec 6, 06:48 (2 d)
Engine
blob
Format
Raw Data
Handle
22744454
Attached To
rAKA akantu
phasefield.cc
View Options
/**
* Copyright (©) 2020-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "phasefield.hh"
#include "aka_common.hh"
#include "phase_field_model.hh"
#include "random_internal_field.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
PhaseField
::
PhaseField
(
PhaseFieldModel
&
model
,
const
ID
&
id
,
const
ID
&
fe_engine_id
)
:
Parent
(
model
,
id
,
model
.
getSpatialDimension
(),
_ek_regular
,
fe_engine_id
),
g_c
(
this
->
registerInternal
<
Real
,
DefaultRandomInternalField
>
(
"g_c"
,
1
,
fe_engine_id
)),
damage_on_qpoints
(
this
->
registerInternal
(
"damage"
,
1
,
fe_engine_id
)),
gradd
(
this
->
registerInternal
(
"grad_d"
,
spatial_dimension
,
fe_engine_id
)),
phi
(
this
->
registerInternal
(
"phi"
,
1
,
fe_engine_id
)),
strain
(
this
->
registerInternal
(
"strain"
,
spatial_dimension
*
spatial_dimension
,
fe_engine_id
)),
driving_force
(
this
->
registerInternal
(
"driving_force"
,
1
,
fe_engine_id
)),
driving_energy
(
this
->
registerInternal
(
"driving_energy"
,
spatial_dimension
,
fe_engine_id
)),
damage_energy
(
this
->
registerInternal
(
"damage_energy"
,
spatial_dimension
*
spatial_dimension
,
fe_engine_id
)),
damage_energy_density
(
this
->
registerInternal
(
"damage_energy_density"
,
1
,
fe_engine_id
)),
dissipated_energy
(
this
->
registerInternal
(
"dissipated_energy"
,
1
,
fe_engine_id
))
{
this
->
phi
.
initializeHistory
();
this
->
registerParam
(
"l0"
,
l0
,
Real
(
0.
),
_pat_parsable
|
_pat_readable
,
"length scale parameter"
);
this
->
registerParam
(
"gc"
,
g_c
,
_pat_parsable
|
_pat_readable
,
"critical local fracture energy density"
);
this
->
registerParam
(
"E"
,
E
,
_pat_parsable
|
_pat_readable
,
"Young's modulus"
);
this
->
registerParam
(
"nu"
,
nu
,
_pat_parsable
|
_pat_readable
,
"Poisson ratio"
);
this
->
registerParam
(
"isotropic"
,
isotropic
,
true
,
_pat_parsable
|
_pat_readable
,
"Use isotropic formulation"
);
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
updateInternalParameters
()
{
this
->
lambda
=
this
->
nu
*
this
->
E
/
((
1
+
this
->
nu
)
*
(
1
-
2
*
this
->
nu
));
this
->
mu
=
this
->
E
/
(
2
*
(
1
+
this
->
nu
));
Parent
::
updateInternalParameters
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
computeAllDrivingForces
(
GhostType
ghost_type
)
{
auto
&
damage
=
handler
.
getDamage
();
auto
&
fem
=
this
->
getFEEngine
();
for
(
const
auto
&
type
:
this
->
getElementFilter
().
elementTypes
(
this
->
spatial_dimension
,
ghost_type
))
{
auto
&
elem_filter
=
this
->
getElementFilter
(
type
,
ghost_type
);
if
(
elem_filter
.
empty
())
{
continue
;
}
// compute the damage on quadrature points
auto
&
damage_interpolated
=
damage_on_qpoints
(
type
,
ghost_type
);
fem
.
interpolateOnIntegrationPoints
(
damage
,
damage_interpolated
,
1
,
type
,
ghost_type
);
auto
&
gradd_vect
=
gradd
(
type
,
_not_ghost
);
/// compute @f$\nabla u@f$
fem
.
gradientOnIntegrationPoints
(
damage
,
gradd_vect
,
1
,
type
,
ghost_type
,
elem_filter
);
computeDrivingForce
(
type
,
ghost_type
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
assembleInternalForces
(
GhostType
ghost_type
)
{
Array
<
Real
>
&
internal_force
=
handler
.
getInternalForce
();
auto
&
fem
=
this
->
getFEEngine
();
for
(
auto
type
:
getElementFilter
().
elementTypes
(
_ghost_type
=
ghost_type
))
{
auto
&
elem_filter
=
getElementFilter
(
type
,
ghost_type
);
if
(
elem_filter
.
empty
())
{
continue
;
}
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
&
driving_force_vect
=
driving_force
(
type
,
ghost_type
);
Array
<
Real
>
nt_driving_force
(
0
,
nb_nodes_per_element
);
fem
.
computeNtb
(
driving_force_vect
,
nt_driving_force
,
type
,
ghost_type
,
elem_filter
);
Array
<
Real
>
int_nt_driving_force
(
0
,
nb_nodes_per_element
);
fem
.
integrate
(
nt_driving_force
,
int_nt_driving_force
,
nb_nodes_per_element
,
type
,
ghost_type
,
elem_filter
);
handler
.
getDOFManager
().
assembleElementalArrayLocalArray
(
int_nt_driving_force
,
internal_force
,
type
,
ghost_type
,
-
1
,
elem_filter
);
// damage_energy_on_qpoints = gc*l0 = scalar
auto
&
driving_energy_vect
=
driving_energy
(
type
,
ghost_type
);
Array
<
Real
>
bt_driving_energy
(
0
,
nb_nodes_per_element
);
fem
.
computeBtD
(
driving_energy_vect
,
bt_driving_energy
,
type
,
ghost_type
,
elem_filter
);
Array
<
Real
>
int_bt_driving_energy
(
0
,
nb_nodes_per_element
);
fem
.
integrate
(
bt_driving_energy
,
int_bt_driving_energy
,
nb_nodes_per_element
,
type
,
ghost_type
,
elem_filter
);
handler
.
getDOFManager
().
assembleElementalArrayLocalArray
(
int_bt_driving_energy
,
internal_force
,
type
,
ghost_type
,
-
1
,
elem_filter
);
}
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
assembleStiffnessMatrix
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_INFO
(
"Assemble the new stiffness matrix"
);
auto
&
fem
=
this
->
getFEEngine
();
for
(
auto
type
:
getElementFilter
().
elementTypes
(
spatial_dimension
,
ghost_type
))
{
auto
&
elem_filter
=
getElementFilter
(
type
,
ghost_type
);
if
(
elem_filter
.
empty
())
{
return
;
}
auto
nb_element
=
elem_filter
.
size
();
auto
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
auto
nb_quadrature_points
=
fem
.
getNbIntegrationPoints
(
type
,
ghost_type
);
auto
nt_b_n
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
*
nb_quadrature_points
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"N^t*b*N"
);
auto
bt_d_b
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
*
nb_quadrature_points
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"B^t*D*B"
);
// damage_energy_density_on_qpoints = gc/l0 + phi = scalar
auto
&
damage_energy_density_vect
=
damage_energy_density
(
type
,
ghost_type
);
// damage_energy_on_qpoints = gc*l0 = scalar
auto
&
damage_energy_vect
=
damage_energy
(
type
,
ghost_type
);
fem
.
computeBtDB
(
damage_energy_vect
,
*
bt_d_b
,
2
,
type
,
ghost_type
,
elem_filter
);
fem
.
computeNtbN
(
damage_energy_density_vect
,
*
nt_b_n
,
type
,
ghost_type
,
elem_filter
);
/// compute @f$ K_{\grad d} = \int_e \mathbf{N}^t * \mathbf{w} *
/// \mathbf{N}@f$
auto
K_n
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"K_n"
);
fem
.
integrate
(
*
nt_b_n
,
*
K_n
,
nb_nodes_per_element
*
nb_nodes_per_element
,
type
,
ghost_type
,
elem_filter
);
handler
.
getDOFManager
().
assembleElementalMatricesToMatrix
(
"K"
,
"damage"
,
*
K_n
,
type
,
_not_ghost
,
_symmetric
,
elem_filter
);
/// compute @f$ K_{\grad d} = \int_e \mathbf{B}^t * \mathbf{W} *
/// \mathbf{B}@f$
auto
K_b
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
,
nb_nodes_per_element
*
nb_nodes_per_element
,
"K_b"
);
fem
.
integrate
(
*
bt_d_b
,
*
K_b
,
nb_nodes_per_element
*
nb_nodes_per_element
,
type
,
ghost_type
,
elem_filter
);
handler
.
getDOFManager
().
assembleElementalMatricesToMatrix
(
"K"
,
"damage"
,
*
K_b
,
type
,
_not_ghost
,
_symmetric
,
elem_filter
);
}
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
computeDissipatedEnergyByElements
()
{
const
Array
<
Real
>
&
damage
=
handler
.
getDamage
();
auto
&
fem
=
this
->
getFEEngine
();
for
(
auto
type
:
getElementFilter
().
elementTypes
(
spatial_dimension
,
_not_ghost
))
{
Array
<
Idx
>
&
elem_filter
=
getElementFilter
(
type
,
_not_ghost
);
if
(
elem_filter
.
empty
())
{
continue
;
}
Array
<
Real
>
&
damage_interpolated
=
damage_on_qpoints
(
type
,
_not_ghost
);
// compute the damage on quadrature points
fem
.
interpolateOnIntegrationPoints
(
damage
,
damage_interpolated
,
1
,
type
,
_not_ghost
);
Array
<
Real
>
&
gradd_vect
=
gradd
(
type
,
_not_ghost
);
/// compute @f$\nabla u@f$
fem
.
gradientOnIntegrationPoints
(
damage
,
gradd_vect
,
1
,
type
,
_not_ghost
,
elem_filter
);
computeDissipatedEnergy
(
type
);
}
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
computeDissipatedEnergy
(
ElementType
/*unused*/
)
{
AKANTU_TO_IMPLEMENT
();
}
/* -------------------------------------------------------------------------- */
PhaseFieldFactory
&
PhaseField
::
getFactory
()
{
return
PhaseFieldFactory
::
getInstance
();
}
/* -------------------------------------------------------------------------- */
Real
PhaseField
::
getEnergy
(
const
ID
&
energy_id
)
{
if
(
energy_id
!=
"dissipated"
)
{
return
0.
;
}
Real
edis
=
0.
;
auto
&
fem
=
this
->
getFEEngine
();
computeDissipatedEnergyByElements
();
/// integrate the dissipated energy for each type of elements
for
(
auto
type
:
getElementFilter
().
elementTypes
(
spatial_dimension
,
_not_ghost
))
{
edis
+=
fem
.
integrate
(
dissipated_energy
(
type
,
_not_ghost
),
type
,
_not_ghost
,
getElementFilter
(
type
,
_not_ghost
));
}
return
edis
;
}
/* -------------------------------------------------------------------------- */
Real
PhaseField
::
getEnergy
(
const
ID
&
energy_id
,
const
Element
&
element
)
{
if
(
energy_id
!=
"dissipated"
)
{
return
0.
;
}
auto
&
fem
=
this
->
getFEEngine
();
Vector
<
Real
>
edis_on_quad_points
(
fem
.
getNbIntegrationPoints
(
element
.
type
));
computeDissipatedEnergyByElement
(
element
.
type
,
element
.
element
,
edis_on_quad_points
);
return
fem
.
integrate
(
edis_on_quad_points
,
element
);
}
/* -------------------------------------------------------------------------- */
void
PhaseField
::
beforeSolveStep
()
{
this
->
savePreviousState
();
this
->
computeAllDrivingForces
(
_not_ghost
);
}
}
// namespace akantu
Event Timeline
Log In to Comment