Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90384132
aka_optimize.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 04:16
Size
10 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 04:16 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
21242273
Attached To
rAKA akantu
aka_optimize.hh
View Options
/**
* @file aka_optimize.hh
*
* @author Alejandro M. Aragón <alejandro.aragon@epfl.ch>
*
* @date creation: Fri Jan 04 2013
* @date last modification: Mon Sep 15 2014
*
* @brief Objects that can be used to carry out optimization
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifndef __AKANTU_OPTIMIZE_HH__
#define __AKANTU_OPTIMIZE_HH__
#include "aka_config.hh"
#include "aka_common.hh"
#include "aka_point.hh"
#include "solid_mechanics_model.hh"
#include <iostream>
#include <nlopt.hpp>
#include <array/expr.hpp>
//#define DEBUG_OPTIMIZE 1
__BEGIN_AKANTU__
using
std
::
cout
;
using
std
::
endl
;
typedef
array
::
Array
<
1
,
Real
>
vector_type
;
typedef
array
::
Array
<
2
,
Real
>
matrix_type
;
std
::
ostream
&
operator
<<
(
std
::
ostream
&
,
nlopt
::
result
);
enum
Optimizator_type
{
Min_t
,
Max_t
};
//! Class used for optimization
/*! This class is a convenience object that inherits from nlopt::opt and carries
* some routines that are common to a nonlinear optimization. The objects sets
* the optimization algorithm as nlopt::LD_SLSQP, a sequential quadratic programming
* (SQP) algorithm for nonlinearly constrained gradient-based optimization
* (supporting both inequality and equality constraints), based on the
* implementation by Dieter Kraft.
*/
class
Optimizator
:
public
nlopt
::
opt
{
typedef
std
::
vector
<
Real
>
point_type
;
typedef
nlopt
::
opt
base_type
;
point_type
&
x_
;
//!< Initial guess for the optimization
Real
val_
;
//!< Function value
public
:
//! Parameter constructor that takes an initial guess and a functor
template
<
class
functor_type
>
Optimizator
(
point_type
&
x0
,
functor_type
&
fn
,
Optimizator_type
t
=
Min_t
,
nlopt
::
algorithm
alg
=
nlopt
::
LD_SLSQP
)
:
base_type
(
alg
,
x0
.
size
()),
x_
(
x0
)
{
if
(
t
==
Min_t
)
this
->
set_min_objective
(
functor_type
::
wrap
,
&
fn
);
else
this
->
set_max_objective
(
functor_type
::
wrap
,
&
fn
);
this
->
set_xtol_rel
(
1e-4
);
}
//! Carry out the optimization and print result
Real
result
()
{
optimize
(
x_
,
val_
);
cout
<<
"Optimum value found at location"
;
for
(
size_t
i
=
0
;
i
<
x_
.
size
();
++
i
)
cout
<<
" "
<<
x_
[
i
];
cout
<<
"
\n
Function value: "
<<
val_
;
return
val_
;
}
};
//! Traits class used as a base class for the Distance_minimizator class template
template
<
ElementType
>
struct
Distance_minimizator_traits
;
//! Partial template specialization for a segment
template
<>
struct
Distance_minimizator_traits
<
_segment_2
>
{
//! Set lower and upper bounds for the master coordinate
static
void
set_bounds
(
nlopt
::
opt
&
opt
)
{
std
::
vector
<
Real
>
lb
(
1
,
-
1
),
ub
(
1
,
1
);
opt
.
set_lower_bounds
(
lb
);
opt
.
set_upper_bounds
(
ub
);
}
//! Select the start point between the center or the ends of the segmet
template
<
class
object_type
>
static
void
start
(
object_type
&
obj
)
{
Real
min
=
std
::
numeric_limits
<
Real
>::
infinity
();
std
::
vector
<
Real
>
xstart
=
{
-
1.
,
0.
,
1.
};
// check center and extremes of element
int
idx
=
-
1
;
for
(
size_t
i
=
0
;
i
<
xstart
.
size
();
++
i
)
{
obj
.
xi_
[
0
]
=
xstart
[
i
];
std
::
vector
<
Real
>
grad
;
// empty vector
Real
new_dist
=
obj
(
obj
.
xi_
,
grad
);
if
(
new_dist
<
min
)
{
min
=
new_dist
;
idx
=
i
;
}
}
obj
.
xi_
[
0
]
=
xstart
[
idx
];
}
};
//! Constraint function for a triangle
static
Real
constrain_triangle_3
(
const
std
::
vector
<
Real
>
&
xi
,
std
::
vector
<
Real
>
&
grad
,
void
*
data
)
{
if
(
!
grad
.
empty
())
{
grad
[
0
]
=
1.
;
grad
[
1
]
=
1.
;
}
return
(
xi
[
0
]
+
xi
[
1
]
-
1.
);
}
//! Helper class used for the definition of triangle partial template specializations
struct
Triangle_minimizator_traits
{
//! Set lower and upper bounds for the master coordinate
static
void
set_bounds
(
nlopt
::
opt
&
opt
)
{
std
::
vector
<
Real
>
lb
(
2
,
Real
());
opt
.
set_lower_bounds
(
lb
);
opt
.
add_inequality_constraint
(
constrain_triangle_3
,
NULL
,
1e-4
);
}
//! Select the start point between the center or the vertices of the triangle
template
<
class
object_type
>
static
void
start
(
object_type
&
obj
)
{
Real
min
=
std
::
numeric_limits
<
Real
>::
infinity
();
Real
xstart
[
4
][
2
]
=
{
{
0.
,
0.
},
{
1.
,
0.
},
{
0.
,
1.
},
{
1.
/
3.
,
1.
/
3.
}
};
// check center and corners of element
int
idx
=
-
1
;
for
(
int
i
=
0
;
i
<
4
;
++
i
)
{
obj
.
xi_
[
0
]
=
xstart
[
i
][
0
];
obj
.
xi_
[
1
]
=
xstart
[
i
][
1
];
std
::
vector
<
Real
>
grad
;
// empty vector
Real
new_dist
=
obj
(
obj
.
xi_
,
grad
);
if
(
new_dist
<
min
)
{
min
=
new_dist
;
idx
=
i
;
}
}
obj
.
xi_
[
0
]
=
xstart
[
idx
][
0
];
obj
.
xi_
[
1
]
=
xstart
[
idx
][
1
];
}
};
//! Partial template specialization for a 3-node triangle
template
<>
struct
Distance_minimizator_traits
<
_triangle_3
>
:
public
Triangle_minimizator_traits
{};
//! Partial template specialization for a 6-node triangle
template
<>
struct
Distance_minimizator_traits
<
_triangle_6
>
:
public
Triangle_minimizator_traits
{};
/*! The Distance_minimizator class template can be used to obtain the closest point
* to a a finite element using the NLopt optimization library.
* \tparam d - The dimension of the problem
* \tparam element_policy - The element type to which the closest point is sought
* The class inherits from Distance_minimizator_traits to take care of functionality
* specific to elements of certain type. The code can be used for elements of type
* _segment_2, _triangle_3, and _triangle_6. The optimization stage is done during the
* constructor by calling the function constructor_common. The closest point is then
* obtained by calling the function point.
*/
template
<
int
d
,
ElementType
element_policy
>
class
Distance_minimizator
:
public
Distance_minimizator_traits
<
element_policy
>
{
friend
class
Triangle_minimizator_traits
;
friend
class
Distance_minimizator_traits
<
element_policy
>
;
const
UInt
nb_nodes
=
ElementClass
<
element_policy
>::
getNbNodesPerElement
();
typedef
Distance_minimizator_traits
<
element_policy
>
traits_type
;
typedef
Point
<
d
>
point_type
;
nlopt
::
opt
opt_
;
//!< Optimizator reference
std
::
vector
<
Real
>
xi_
;
//!< Master coordinate closest to point
vector_type
p_
;
//!< Point to which the distance is minimized
matrix_type
XX_
;
//!< Triangle coordinates
UInt
counter_
;
//!< Optimization iteration counter
Real
fmin_
;
//!< Minimum distance value
//! Common function called during construction to carry out the minimization
void
constructor_common
()
{
traits_type
::
set_bounds
(
opt_
);
opt_
.
set_min_objective
(
wrap
,
this
);
opt_
.
set_ftol_abs
(
1e-4
);
// compute start point
traits_type
::
start
(
*
this
);
// optimize
#ifdef DEBUG_OPTIMIZE
nlopt
::
result
result
=
opt_
.
optimize
(
xi_
,
fmin_
);
if
(
result
>
0
)
cout
<<
"Optimium found in "
<<
counter_
<<
" iterations: "
<<
fmin_
<<
endl
;
cout
<<
"Point at master coordinate "
<<
xi_
[
0
]
<<
": "
<<
point
()
<<
endl
;
cout
<<
result
<<
endl
;
#else
opt_
.
optimize
(
xi_
,
fmin_
);
#endif
}
public
:
//! Parameter constructor
/*! This parameter constructor takes the point to which the minimum distance is
* sought, and a container of points points that are the coordinates of the finite
* element
* \param r - Point coordinates
* \param pts - Container of triangle points
*/
template
<
class
point_type
,
class
point_container
>
Distance_minimizator
(
const
point_type
&
p
,
const
point_container
&
pts
)
:
opt_
(
nlopt
::
LD_SLSQP
,
d
-
1
),
xi_
(
d
-
1
),
p_
(
d
),
XX_
(
nb_nodes
,
d
),
counter_
()
{
// get triangle and point coordinates
for
(
UInt
i
=
0
;
i
<
d
;
++
i
)
{
p_
[
i
]
=
p
[
i
];
for
(
UInt
j
=
0
;
j
<
nb_nodes
;
++
j
)
XX_
(
j
,
i
)
=
pts
[
j
][
i
];
}
// common constructor operation
constructor_common
();
}
//! Parameter constructor
/*! This parameter constructor uses a pointer to the coordinates of the point,
* an Element pointer, and the SolidMechanicsModel.
* \param r - Point coordinates
* \param el - Finite element to which the distance is minimized
* \param model - Solid mechanics model
*/
Distance_minimizator
(
const
Real
*
r
,
const
Element
*
el
,
SolidMechanicsModel
&
model
)
:
opt_
(
nlopt
::
LD_SLSQP
,
d
-
1
),
xi_
(
d
-
1
),
p_
(
d
),
XX_
(
nb_nodes
,
d
),
counter_
()
{
Mesh
&
mesh
=
model
.
getMesh
();
const
Array
<
Real
>
&
X
=
model
.
getCurrentPosition
();
const
Array
<
UInt
>
&
conn
=
mesh
.
getConnectivity
(
el
->
type
);
for
(
UInt
i
=
0
;
i
<
nb_nodes
;
++
i
)
{
p_
(
i
)
=
r
[
i
];
for
(
UInt
j
=
0
;
j
<
d
;
++
j
)
XX_
(
i
,
j
)
=
X
(
conn
(
el
->
element
,
i
),
j
);
}
constructor_common
();
}
vector_type
operator
()(
const
std
::
vector
<
Real
>
&
xi
)
{
vector_type
N
(
nb_nodes
);
vector_type
xi2
(
xi
.
size
(),
const_cast
<
Real
*>
(
&
xi
[
0
]));
ElementClass
<
element_policy
>::
computeShapes
(
xi2
,
N
);
return
transpose
(
XX_
)
*
N
;
}
//! Evaluation of the function and its gradient
Real
operator
()(
const
std
::
vector
<
Real
>
&
xi
,
std
::
vector
<
Real
>
&
grad
)
{
// increment function evaluation counter
++
counter_
;
vector_type
x
=
(
*
this
)(
xi
);
vector_type
diff
=
x
-
p_
;
if
(
!
grad
.
empty
())
{
// compute shape function derivatives
matrix_type
DN
(
d
-
1
,
nb_nodes
);
vector_type
xi2
(
xi
.
size
(),
const_cast
<
Real
*>
(
&
xi
[
0
]));
ElementClass
<
element_policy
>::
computeDNDS
(
xi2
,
DN
);
DN
=
transpose
(
DN
);
// compute jacobian
matrix_type
J
=
transpose
(
XX_
)
*
DN
;
// compute function gradient
vector_type
gradF
=
transpose
(
J
)
*
diff
;
for
(
UInt
i
=
0
;
i
<
gradF
.
size
();
++
i
)
grad
[
i
]
=
gradF
[
i
];
}
// return function value
return
0.5
*
transpose
(
diff
)
*
diff
;
}
//! Return point at current master coordinate
point_type
point
()
{
vector_type
x
=
(
*
this
)(
xi_
);
point_type
p
;
for
(
UInt
i
=
0
;
i
<
x
.
size
();
++
i
)
p
[
i
]
=
x
[
i
];
return
p
;
}
//! Return the number of function evaluations
UInt
iterations
()
const
{
return
counter_
;
}
//! Return the master coordinate
const
std
::
vector
<
Real
>&
master_coordinates
()
{
return
xi_
;
}
//! Function that is used to have this class working with nlopt
static
double
wrap
(
const
std
::
vector
<
double
>
&
x
,
std
::
vector
<
double
>
&
grad
,
void
*
data
)
{
return
(
*
reinterpret_cast
<
Distance_minimizator
<
d
,
element_policy
>*>
(
data
))(
x
,
grad
);
}
};
__END_AKANTU__
#endif
/* __AKANTU_OPTIMIZE_HH__ */
Event Timeline
Log In to Comment