Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91060301
test_material_damage_iterative.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 11:01
Size
6 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 11:01 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22188158
Attached To
rAKA akantu
test_material_damage_iterative.cc
View Options
/**
* @file test_material_damage_iterative.cc
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @date Thu Nov 26 12:20:15 2015
*
* @brief test the material damage iterative
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "material_damage_iterative.hh"
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
/* -------------------------------------------------------------------------- */
/* Main */
/* -------------------------------------------------------------------------- */
int main(int argc, char *argv[]) {
Math::setTolerance(1e-13);
debug::setDebugLevel(dblWarning);
initialize("material.dat" ,argc, argv);
const UInt spatial_dimension = 2;
ElementType element_type = _triangle_3;
StaticCommunicator & comm = akantu::StaticCommunicator::getStaticCommunicator();
Int psize = comm.getNbProc();
Int prank = comm.whoAmI();
/// read the mesh and partion it
Mesh mesh(spatial_dimension);
akantu::MeshPartition * partition = NULL;
if(prank == 0) {
mesh.read("plate.msh");
/// partition the mesh
partition = new MeshPartitionScotch(mesh, spatial_dimension);
partition->partitionate(psize);
}
/// model creation
SolidMechanicsModel model(mesh);
model.initParallel(partition);
delete partition;
/// initialization of the model
model.initFull(SolidMechanicsModelOptions(_static));
/// boundary conditions
/// Dirichlet BC
mesh.createGroupsFromMeshData<std::string>("physical_names"); // creates groups from mesh names
model.applyBC(BC::Dirichlet::FixedValue(0, _x), "left");
model.applyBC(BC::Dirichlet::FixedValue(0, _y), "bottom");
model.applyBC(BC::Dirichlet::FixedValue(2., _y), "top");
/// add fields that should be dumped
model.setBaseName("material_damage_iterative_test");
model.addDumpFieldVector("displacement");;
model.addDumpField("stress");
model.addDumpField("blocked_dofs");
model.addDumpField("residual");
model.addDumpField("grad_u");
model.addDumpField("damage");
model.addDumpField("partitions");
model.addDumpField("material_index");
model.addDumpField("Sc");
model.addDumpField("force");
model.addDumpField("equivalent_stress");
model.dump();
MaterialDamageIterative<spatial_dimension> & material = dynamic_cast<MaterialDamageIterative<spatial_dimension> & >(model.getMaterial(0));
Real error;
bool converged = false;
UInt nb_damaged_elements = 0;
Real max_eq_stress = 0;
/// solve the system
converged = model.solveStep<_scm_newton_raphson_tangent_modified, _scc_increment>(1e-12, error, 2);
if (converged == false) {
std::cout << "The error is: " << error << std::endl;
AKANTU_DEBUG_ASSERT(converged, "Did not converge");
}
model.dump();
/// check that the normalized equivalent stress
Array<Real> & eq_stress = material.getInternal<Real>("equivalent_stress")(element_type, _not_ghost);
Array<Real>::const_scalar_iterator eq_stress_it = eq_stress.begin();
UInt nb_elements = mesh.getNbElement(element_type, _not_ghost);
for (UInt e = 0; e < nb_elements; ++e, ++eq_stress_it) {
if (!Math::are_float_equal(*eq_stress_it, 0.1)) {
std::cout << "Error in the equivalent normalized stress" << std::endl;
finalize();
return EXIT_FAILURE;
}
}
/// get the maximum equivalent stress
max_eq_stress = material.getNormMaxEquivalentStress();
nb_damaged_elements = 0;
if (max_eq_stress > 1.)
nb_damaged_elements = material.updateDamage();
if (nb_damaged_elements) {
std::cout << "Damage occured even though the normalized stress is below 1" << std::endl;
finalize();
return EXIT_FAILURE;
}
/// weaken material locally to cause damage
Array<Real> & strength = const_cast<Array<Real> &>(material.getInternal<Real>("Sc")(element_type, _not_ghost));
Array<Real>::scalar_iterator strength_it = strength.begin();
++strength_it;
*strength_it = 0.9;
strength_it += 4;
*strength_it = 0.898;
/// solve the system again
converged = model.solveStep<_scm_newton_raphson_tangent_modified, _scc_increment>(1e-4, error, 2);
if (converged == false) {
std::cout << "The error is: " << error << std::endl;
AKANTU_DEBUG_ASSERT(converged, "Did not converge");
}
/// get the maximum equivalent stress
max_eq_stress = material.getNormMaxEquivalentStress();
nb_damaged_elements = 0;
if (max_eq_stress > 1.)
nb_damaged_elements = material.updateDamage();
UInt nb_damaged_elements_per_proc = 2;
if (nb_damaged_elements != psize * nb_damaged_elements_per_proc) {
std::cout << "Error in number of damaged elements" << std::endl;
finalize();
return EXIT_FAILURE;
}
/// check that damage occured in correct elements
Real dam_diff = 0.;
Array<Real> & damage = material.getInternal<Real>("damage")(element_type, _not_ghost);
Array<Real>::const_scalar_iterator damage_it = damage.begin();
for (UInt e = 0; e < nb_elements; ++e, ++damage_it) {
if (e==1 || e==5)
dam_diff += std::abs(0.1-*damage_it);
else
dam_diff += (*damage_it);
}
if (dam_diff > 1.e-13) {
std::cout << "Error in damage pattern" << std::endl;
finalize();
return EXIT_FAILURE;
}
/// solve to compute the stresses correctly for dumping
converged = model.solveStep<_scm_newton_raphson_tangent_modified, _scc_increment>(1e-4, error, 2);
if (converged == false) {
std::cout << "The error is: " << error << std::endl;
AKANTU_DEBUG_ASSERT(converged, "Did not converge");
}
model.dump();
finalize();
return EXIT_SUCCESS;
}
Event Timeline
Log In to Comment