\@writefile{lof}{\contentsline {figure}{\numberline {3.1}{\ignorespaces Schematic overview of the two 1D element types in {\texttt {\textbf {Akantu}}}\xspace . In each element, the node numbering as used in {\texttt {\textbf {Akantu}}}\xspace is indicated and also the quadrature points are highlighted (gray circles).\relax }}{9}{figure.caption.5}}
\newlabel{fig:elements:1D}{{3.1}{9}{Schematic overview of the two 1D element types in \akantu . In each element, the node numbering as used in \akantu is indicated and also the quadrature points are highlighted (gray circles).\relax }{figure.caption.5}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.1}{\ignorespaces Some basic properties of the two 1D isoparametric elements in {\texttt {\textbf {Akantu}}}\xspace .\relax }}{9}{table.caption.6}}
\newlabel{tab:elements:1D}{{3.1}{9}{Some basic properties of the two 1D isoparametric elements in \akantu .\relax }{table.caption.6}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.2}{\ignorespaces Schematic overview of the four 2D element types in {\texttt {\textbf {Akantu}}}\xspace . In each element, the node numbering as used in {\texttt {\textbf {Akantu}}}\xspace is indicated and also the quadrature points are highlighted (gray circles).\relax }}{10}{figure.caption.8}}
\newlabel{fig:elements:2D}{{3.2}{10}{Schematic overview of the four 2D element types in \akantu . In each element, the node numbering as used in \akantu is indicated and also the quadrature points are highlighted (gray circles).\relax }{figure.caption.8}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.2}{\ignorespaces Some basic properties of the four 2D isoparametric elements in {\texttt {\textbf {Akantu}}}\xspace .\relax }}{10}{table.caption.9}}
\newlabel{tab:elements:2D}{{3.2}{10}{Some basic properties of the four 2D isoparametric elements in \akantu .\relax }{table.caption.9}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.3}{\ignorespaces Schematic overview of the three 3D element types in {\texttt {\textbf {Akantu}}}\xspace . In each element, the node numbering as used in {\texttt {\textbf {Akantu}}}\xspace is indicated and also the quadrature points are highlighted (gray spheres).\relax }}{11}{figure.caption.11}}
\newlabel{fig:elements:3D}{{3.3}{11}{Schematic overview of the three 3D element types in \akantu . In each element, the node numbering as used in \akantu is indicated and also the quadrature points are highlighted (gray spheres).\relax }{figure.caption.11}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.3}{\ignorespaces Some basic properties of the three 3D isoparametric elements in {\texttt {\textbf {Akantu}}}\xspace .\relax }}{11}{table.caption.12}}
\newlabel{tab:elements:3D}{{3.3}{11}{Some basic properties of the three 3D isoparametric elements in \akantu .\relax }{table.caption.12}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.4}{\ignorespaces Some basic properties of the cohesive elements in {\texttt {\textbf {Akantu}}}\xspace .\relax }}{11}{table.caption.13}}
\newlabel{tab:coh:cohesive_elements}{{3.4}{11}{Some basic properties of the cohesive elements in \akantu .\relax }{table.caption.13}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.4}{\ignorespaces Cohesive element in 2D for quadratic triangular elements T6.\relax }}{12}{figure.caption.14}}
\newlabel{fig:smm:coh:cohesive2d}{{3.4}{12}{Cohesive element in 2D for quadratic triangular elements T6.\relax }{figure.caption.14}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.5}{\ignorespaces Insertion of a cohesive element.\relax }}{12}{figure.caption.15}}
\newlabel{fig:smm:coh:insertion}{{3.5}{12}{Insertion of a cohesive element.\relax }{figure.caption.15}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {3.6}{\ignorespaces Schematic depiction of a Bernoulli beam element (applied to 2D and 3D) in {\texttt {\textbf {Akantu}}}\xspace . The node numbering as used in {\texttt {\textbf {Akantu}}}\xspace is indicated, and also the quadrature points are highlighted (gray circles).\relax }}{13}{figure.caption.17}}
\newlabel{fig:elements:bernoulli}{{3.6}{13}{Schematic depiction of a Bernoulli beam element (applied to 2D and 3D) in \akantu . The node numbering as used in \akantu is indicated, and also the quadrature points are highlighted (gray circles).\relax }{figure.caption.17}{}}
\@writefile{lot}{\contentsline {table}{\numberline {3.5}{\ignorespaces Some basic properties of the beam elements in {\texttt {\textbf {Akantu}}}\xspace \relax }}{13}{table.caption.18}}
\newlabel{tab:elements:bernoulli}{{3.5}{13}{Some basic properties of the beam elements in \akantu \relax }{table.caption.18}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.1}{\ignorespaces Problem domain $\Omega $ with boundary in three dimensions. The Dirchelet and the Neumann regions of the boundary are denoted with $\Gamma _u$ and $\Gamma _t$, respecitvely.\relax }}{16}{figure.caption.19}}
\newlabel{fig:smm:boundaries}{{4.1}{16}{Problem domain $\Omega $ with boundary in three dimensions. The Dirchelet and the Neumann regions of the boundary are denoted with $\Gamma _u$ and $\Gamma _t$, respecitvely.\relax }{figure.caption.19}{}}
\newlabel{fig:problemDomain}{{4.1}{16}{Problem domain $\Omega $ with boundary in three dimensions. The Dirchelet and the Neumann regions of the boundary are denoted with $\Gamma _u$ and $\Gamma _t$, respecitvely.\relax }{figure.caption.19}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.5}{\ignorespaces Solution of the static analysis. Left: the initial condition, right: the solution (deformation magnified 50 times)\relax }}{22}{figure.caption.25}}
\newlabel{fig:smm:implicit:static_solution}{{4.5}{22}{Solution of the static analysis. Left: the initial condition, right: the solution (deformation magnified 50 times)\relax }{figure.caption.25}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.7}{\ignorespaces Deformed beam at 3 different times (displacement are magnified by a factor 10).\relax }}{24}{figure.caption.27}}
\newlabel{fig:smm:implicit:dynamic_solution}{{4.7}{24}{Deformed beam at 3 different times (displacement are magnified by a factor 10).\relax }{figure.caption.27}{}}
\@writefile{toc}{\contentsline {subsection}{\numberline {4.3.2}Explicit Time Integration}{24}{subsection.4.3.2}}
\newlabel{ssect:smm:expl-time-integr}{{4.3.2}{24}{Explicit Time Integration}{subsection.4.3.2}{}}
\newlabel{eqn:smm:explicit:stabletime}{{4.21}{25}{Explicit Time Integration}{equation.4.3.21}{}}
\newlabel{eqn:smm:explicit:onehalfvelocity}{{4.23}{25}{Explicit Time Integration}{equation.4.3.23}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.9}{\ignorespaces (a) Stress-strain curve for elastic material and (b) schematic representation of Hooke's law, denoted as a spring.\relax }}{27}{figure.caption.30}}
\newlabel{fig:smm:cl:elastic}{{4.9}{27}{(a) Stress-strain curve for elastic material and (b) schematic representation of Hooke's law, denoted as a spring.\relax }{figure.caption.30}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.12}{\ignorespaces (a) Characteristic stress-strain behavior of a visco-elastic material with hysteresis loop and (b) schematic representation of the standard rheological linear solid visco-elastic model.\relax }}{30}{figure.caption.35}}
\newlabel{fig:smm:cl:visco-elastic}{{4.12}{30}{(a) Characteristic stress-strain behavior of a visco-elastic material with hysteresis loop and (b) schematic representation of the standard rheological linear solid visco-elastic model.\relax }{figure.caption.35}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {4.13}{\ignorespaces Stress-strain curve for the small-deformation plasticity with linear isotropic hardening. \relax }}{31}{figure.caption.36}}
\newlabel{fig:smm:cl:Lin-strain-hard}{{4.13}{31}{Stress-strain curve for the small-deformation plasticity with linear isotropic hardening. \relax }{figure.caption.36}{}}
\@writefile{lot}{\contentsline {table}{\numberline {5.1}{\ignorespaces Material properties for structural elements defined in the class \mybox {\texttt {StructuralMaterial}}.\relax }}{44}{table.caption.45}}
\newlabel{tab:structMechMod:strucMaterial}{{5.1}{44}{Material properties for structural elements defined in the class \code {StructuralMaterial}.\relax }{table.caption.45}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {6.1}{\ignorespaces Initial temperature field (left) and after 15000 time steps = 30 minutes (right). The lines represent iso-surfaces.\relax }}{49}{figure.caption.47}}
\newlabel{fig:htm:explicit:dynamic}{{6.1}{49}{Initial temperature field (left) and after 15000 time steps = 30 minutes (right). The lines represent iso-surfaces.\relax }{figure.caption.47}{}}
\@writefile{lot}{\contentsline {table}{\numberline {7.1}{\ignorespaces List of dumpable fields for \mybox {\texttt {SolidMechanicsModel}}.\relax }}{52}{table.caption.48}}
\newlabel{tab:io:smm_field_list}{{7.1}{52}{List of dumpable fields for \code {SolidMechanicsModel}.\relax }{table.caption.48}{}}
\@writefile{lof}{\contentsline {figure}{\numberline {9.1}{\ignorespaces State of pressure and deformation at the end of the simulation of the example of Hertz in 3D.\relax }}{60}{figure.caption.50}}
\newlabel{fig:hertz_3D}{{9.1}{60}{State of pressure and deformation at the end of the simulation of the example of Hertz in 3D.\relax }{figure.caption.50}{}}