Page MenuHomec4science

test_volume_computation.cc
No OneTemporary

File Metadata

Created
Wed, Jul 10, 13:28

test_volume_computation.cc

/**
* @file test_volume_computation.cc
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @date Thu Nov 26 12:20:15 2015
*
* @brief test the volume computation for the different sub-materials
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "material_igfem_saw_tooth_damage.hh"
#include "material_iterative_stiffness_reduction.hh"
#include "solid_mechanics_model_igfem.hh"
/* -------------------------------------------------------------------------- */
using namespace akantu;
class TestMaterialSelector : public MaterialSelector {
public:
TestMaterialSelector(SolidMechanicsModelIGFEM & model)
: MaterialSelector(), model(model),
spatial_dimension(model.getSpatialDimension()) {}
UInt operator()(const Element & element) {
if (Mesh::getKind(element.type) == _ek_igfem)
return 2;
else {
/// regular elements
const Mesh & mesh = model.getMesh();
Vector<Real> barycenter(this->spatial_dimension);
mesh.getBarycenter(element, barycenter);
/// check if element belongs to ASR gel
if (model.isInside(barycenter))
return 1;
}
return 0;
}
protected:
SolidMechanicsModelIGFEM & model;
UInt spatial_dimension;
};
/* -------------------------------------------------------------------------- */
/* Main */
/* -------------------------------------------------------------------------- */
int main(int argc, char * argv[]) {
Math::setTolerance(1e-13);
debug::setDebugLevel(dblWarning);
initialize("material_stiffness_reduction.dat", argc, argv);
const UInt spatial_dimension = 2;
StaticCommunicator & comm =
akantu::StaticCommunicator::getStaticCommunicator();
Int psize = comm.getNbProc();
Int prank = comm.whoAmI();
/// read the mesh and partion it
Mesh mesh(spatial_dimension);
akantu::MeshPartition * partition = NULL;
if (prank == 0) {
mesh.read("test_damage_transfer.msh");
/// partition the mesh
partition = new MeshPartitionScotch(mesh, spatial_dimension);
partition->partitionate(psize);
}
/// model creation
SolidMechanicsModelIGFEM model(mesh);
model.initParallel(partition);
delete partition;
Math::setTolerance(1.e-14);
/// intialize the geometry and set the material selector
std::list<SK::Sphere_3> inclusions_list;
model.registerGeometryObject(inclusions_list, "inclusion");
Real val = 1000000000;
Real radius_squared = (val - 0.1) * (val - 0.1);
Vector<Real> center(spatial_dimension);
center(0) = 0;
center(1) = val;
SK::Sphere_3 sphere(SK::Point_3(center(0), center(1), 0.), radius_squared);
inclusions_list.push_back(sphere);
TestMaterialSelector * mat_selector = new TestMaterialSelector(model);
model.setMaterialSelector(*mat_selector);
/// initialization of the model
model.initFull();
/// boundary conditions
mesh.computeBoundingBox();
const Vector<Real> & lowerBounds = mesh.getLowerBounds();
const Vector<Real> & upperBounds = mesh.getUpperBounds();
Real bottom = lowerBounds(1);
Real top = upperBounds(1);
Real left = lowerBounds(0);
Real eps = std::abs((top - bottom) * 1e-6);
const Array<Real> & pos = mesh.getNodes();
Array<bool> & boun = model.getBlockedDOFs();
Array<Real> & disp = model.getDisplacement();
for (UInt n = 0; n < mesh.getNbNodes(); ++n) {
if (std::abs(pos(n, 1) - bottom) < eps) {
boun(n, 1) = true;
disp(n, 1) = 0.;
}
if (std::abs(pos(n, 1) - top) < eps) {
boun(n, 1) = true;
disp(n, 1) = 1.e-3;
}
if (std::abs(pos(n, 0) - left) < eps) {
boun(n, 0) = true;
disp(n, 0) = 0.;
}
}
/// add fields that should be dumped
model.setBaseName("regular");
model.addDumpField("material_index");
model.addDumpFieldVector("displacement");
;
model.addDumpField("stress");
model.addDumpField("blocked_dofs");
model.addDumpField("residual");
model.addDumpField("grad_u");
model.addDumpField("damage");
model.addDumpField("partitions");
model.addDumpField("Sc");
model.addDumpField("force");
model.addDumpField("equivalent_stress");
model.addDumpField("ultimate_strain");
model.setBaseNameToDumper("igfem elements", "igfem elements");
model.addDumpFieldToDumper("igfem elements", "material_index");
model.addDumpFieldVectorToDumper("igfem elements", "displacement");
;
model.addDumpFieldToDumper("igfem elements", "stress");
model.addDumpFieldToDumper("igfem elements", "blocked_dofs");
model.addDumpFieldToDumper("igfem elements", "residual");
model.addDumpFieldToDumper("igfem elements", "grad_u");
model.addDumpFieldToDumper("igfem elements", "damage");
model.addDumpFieldToDumper("igfem elements", "partitions");
model.addDumpFieldToDumper("igfem elements", "Sc");
model.addDumpFieldToDumper("igfem elements", "force");
model.addDumpFieldToDumper("igfem elements", "equivalent_stress");
model.addDumpFieldToDumper("igfem elements", "ultimate_strain");
model.dump();
model.dump("igfem elements");
Real new_radius = (val - 0.1);
model.moveInterface(new_radius);
model.update("inclusion");
model.dump();
model.dump("igfem elements");
/// get a reference to the all the materials
const Material & standard_material_damage = model.getMaterial(0);
const Material & standard_material_elastic = model.getMaterial(1);
const Material & igfem_material = model.getMaterial(2);
const ElementType standard_type = _triangle_3;
const ElementType igfem_type = _igfem_triangle_5;
/// compute the volume on both sides of the interface
/// regular elements
const Array<UInt> & material_filter_0 =
standard_material_damage.getElementFilter(standard_type);
const Array<UInt> & material_filter_1 =
standard_material_elastic.getElementFilter(standard_type);
const Array<UInt> & material_filter_2 =
igfem_material.getElementFilter(igfem_type);
Array<Real> Volume_0(
material_filter_0.getSize() *
model.getFEEngine().getNbIntegrationPoints(standard_type),
1, 1.);
Real volume_material_damage = model.getFEEngine().integrate(
Volume_0, standard_type, _not_ghost, material_filter_0);
Array<Real> Volume_1(
material_filter_1.getSize() *
model.getFEEngine().getNbIntegrationPoints(standard_type),
1, 1.);
Real volume_material_elastic = model.getFEEngine().integrate(
Volume_1, standard_type, _not_ghost, material_filter_1);
/// igfem elements
const Array<UInt> & sub_mat =
igfem_material.getInternal<UInt>("sub_material")(igfem_type, _not_ghost);
Array<Real> sub_mat_to_real(sub_mat.getSize(), 1, 1.);
for (UInt i = 0; i < sub_mat.getSize(); ++i)
sub_mat_to_real(i) = Real(sub_mat(i));
Real volume_outside = model.getFEEngine("IGFEMFEEngine")
.integrate(sub_mat_to_real, igfem_type, _not_ghost,
material_filter_2);
Array<Real> IGFEMVolume(sub_mat.getSize(), 1, 1.);
Real total_igfem_volume =
model.getFEEngine("IGFEMFEEngine")
.integrate(IGFEMVolume, igfem_type, _not_ghost, material_filter_2);
Real volume_inside = total_igfem_volume - volume_outside;
Math::setTolerance(1.e-8);
if (!Math::are_float_equal(volume_material_damage, 0.5) ||
!Math::are_float_equal(volume_material_elastic, 0.25) ||
!Math::are_float_equal(volume_outside, 0.1) ||
!Math::are_float_equal(volume_inside, (0.15))) {
std::cout << "the test failed!!!" << std::endl;
finalize();
return EXIT_FAILURE;
}
finalize();
return EXIT_SUCCESS;
}

Event Timeline