Page MenuHomec4science

neighborhood_max_criterion.cc
No OneTemporary

File Metadata

Created
Sun, Jul 7, 21:28

neighborhood_max_criterion.cc

/**
* @file neighborhood_max_criterion.cc
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
*
* @date creation: Thu Oct 15 2015
* @date last modification: Tue Nov 24 2015
*
* @brief Implementation of class NeighborhoodMaxCriterion
*
* @section LICENSE
*
* Copyright (©) 2015 EPFL (Ecole Polytechnique Fédérale de Lausanne) Laboratory
* (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "neighborhood_max_criterion.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
NeighborhoodMaxCriterion::NeighborhoodMaxCriterion(const SolidMechanicsModel & model,
const ElementTypeMapReal & quad_coordinates,
const ID & criterion_id,
const ID & id,
const MemoryID & memory_id) :
NeighborhoodBase(model, quad_coordinates, id, memory_id),
Parsable(_st_non_local, id),
is_highest("is_highest", id),
criterion(criterion_id, id)
{
AKANTU_DEBUG_IN();
this->registerParam("radius" , neighborhood_radius , 100.,
_pat_parsable | _pat_readable , "Non local radius");
Mesh & mesh = this->model.getMesh();
/// allocate the element type map arrays for _not_ghosts: One entry per quad
GhostType ghost_type = _not_ghost;
Mesh::type_iterator it = mesh.firstType(spatial_dimension, ghost_type);
Mesh::type_iterator last_type = mesh.lastType (spatial_dimension, ghost_type);
for(; it != last_type; ++it) {
UInt new_size = this->quad_coordinates(*it, ghost_type).getSize();
this->is_highest.alloc(new_size, 1, *it, ghost_type, true);
this->criterion.alloc(new_size, 1, *it, ghost_type, true);
}
/// criterion needs allocation also for ghost
ghost_type = _ghost;
it = mesh.firstType(spatial_dimension, ghost_type);
last_type = mesh.lastType(spatial_dimension, ghost_type);
for(; it != last_type; ++it) {
UInt new_size = this->quad_coordinates(*it, ghost_type).getSize();
this->criterion.alloc(new_size, 1, *it, ghost_type, true);
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
NeighborhoodMaxCriterion::~NeighborhoodMaxCriterion() {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void NeighborhoodMaxCriterion::initNeighborhood() {
AKANTU_DEBUG_IN();
/// parse the input parameter
const Parser & parser = getStaticParser();
const ParserSection & section_neighborhood = *(parser.getSubSections(_st_neighborhood).first);
this->parseSection(section_neighborhood);
AKANTU_DEBUG_INFO("Creating the grid");
this->createGrid();
/// insert the non-ghost quads into the grid
this->insertAllQuads(_not_ghost);
/// store the number of current ghost elements for each type in the mesh
ElementTypeMap<UInt> nb_ghost_protected;
Mesh & mesh = this->model.getMesh();
Mesh::type_iterator it = mesh.firstType(spatial_dimension, _ghost);
Mesh::type_iterator last_type = mesh.lastType(spatial_dimension, _ghost);
for(; it != last_type; ++it)
nb_ghost_protected(mesh.getNbElement(*it, _ghost), *it, _ghost);
/// create the grid synchronizer
this->createGridSynchronizer();
/// insert the ghost quads into the grid
this->insertAllQuads(_ghost);
/// create the pair lists
this->updatePairList();
/// remove the unneccessary ghosts
this->cleanupExtraGhostElements(nb_ghost_protected);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void NeighborhoodMaxCriterion::createGridSynchronizer() {
this->is_creating_grid = true;
std::set<SynchronizationTag> tags;
tags.insert(_gst_nh_criterion);
std::stringstream sstr; sstr << getID() << ":grid_synchronizer";
this->grid_synchronizer = GridSynchronizer::createGridSynchronizer(this->model.getMesh(),
*spatial_grid,
sstr.str(),
synch_registry,
tags, 0, false);
this->is_creating_grid = false;
}
/* -------------------------------------------------------------------------- */
void NeighborhoodMaxCriterion::insertAllQuads(const GhostType & ghost_type) {
IntegrationPoint q;
q.ghost_type = ghost_type;
Mesh & mesh = this->model.getMesh();
Mesh::type_iterator it = mesh.firstType(spatial_dimension, ghost_type);
Mesh::type_iterator last_type = mesh.lastType (spatial_dimension, ghost_type);
for(; it != last_type; ++it) {
UInt nb_element = mesh.getNbElement(*it, ghost_type);
UInt nb_quad = this->model.getFEEngine().getNbIntegrationPoints(*it, ghost_type);
const Array<Real> & quads = this->quad_coordinates(*it, ghost_type);
q.type = *it;
Array<Real>::const_vector_iterator quad = quads.begin(spatial_dimension);
for (UInt e = 0; e < nb_element; ++e) {
q.element = e;
for (UInt nq = 0; nq < nb_quad; ++nq) {
q.num_point = nq;
q.global_num = q.element * nb_quad + nq;
spatial_grid->insert(q, *quad);
++quad;
}
}
}
}
/* -------------------------------------------------------------------------- */
void NeighborhoodMaxCriterion::findMaxQuads(std::vector<IntegrationPoint> & max_quads) {
AKANTU_DEBUG_IN();
/// clear the element type maps
this->is_highest.clear();
this->criterion.clear();
/// update the values of the criterion
const ID field_name = criterion.getName();
for (UInt m = 0; m < this->model.getNbMaterials(); ++m) {
const Material & material = this->model.getMaterial(m);
if (material.isInternal<Real>(field_name, _ek_regular))
for(UInt g = _not_ghost; g <= _ghost; ++g) {
GhostType ghost_type = (GhostType) g;
material.flattenInternal(field_name, criterion, ghost_type, _ek_regular);
}
}
/// start the exchange the value of the criterion on the ghost elements
SynchronizerRegistry & synch_registry = this->model.getSynchronizerRegistry();
synch_registry.asynchronousSynchronize(_gst_nh_criterion);
/// compare to not-ghost neighbors
checkNeighbors(_not_ghost);
/// finish the exchange
synch_registry.waitEndSynchronize(_gst_nh_criterion);
/// compare to ghost neighbors
checkNeighbors(_ghost);
/// extract the quads with highest criterion in their neighborhood
IntegrationPoint quad;
quad.ghost_type = _not_ghost;
Mesh & mesh = this->model.getMesh();
Mesh::type_iterator it = mesh.firstType(spatial_dimension, _not_ghost);
Mesh::type_iterator last_type = mesh.lastType(spatial_dimension, _not_ghost);
for(; it != last_type; ++it) {
quad.type = *it;
Array<bool>::const_scalar_iterator is_highest_it = is_highest(*it, _not_ghost).begin();
Array<bool>::const_scalar_iterator is_highest_end = is_highest(*it, _not_ghost).end();
UInt nb_quadrature_points = this->model.getFEEngine().getNbIntegrationPoints(*it, _not_ghost);
UInt q = 0;
/// loop over is_highest for the current element type
for (;is_highest_it != is_highest_end; ++is_highest_it, ++q) {
if (*is_highest_it) {
/// gauss point has the highest stress in his neighbourhood
quad.element = q / nb_quadrature_points;
quad.global_num = q;
quad.num_point = q % nb_quadrature_points;
max_quads.push_back(quad);
}
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void NeighborhoodMaxCriterion::checkNeighbors(const GhostType & ghost_type2) {
AKANTU_DEBUG_IN();
PairList::const_iterator first_pair = pair_list[ghost_type2].begin();
PairList::const_iterator last_pair = pair_list[ghost_type2].end();
// Compute the weights
for(;first_pair != last_pair; ++first_pair) {
const IntegrationPoint & lq1 = first_pair->first;
const IntegrationPoint & lq2 = first_pair->second;
Array<bool> & has_highest_eq_stress_1 = is_highest(lq1.type, lq1.ghost_type);
const Array<Real> & criterion_1 = this->criterion(lq1.type, lq1.ghost_type);
const Array<Real> & criterion_2 = this->criterion(lq2.type, lq2.ghost_type);
if(criterion_1(lq1.global_num) < criterion_2(lq2.global_num))
has_highest_eq_stress_1(lq1.global_num) = false;
else if (ghost_type2 != _ghost) {
Array<bool> & has_highest_eq_stress_2 = is_highest(lq2.type, lq2.ghost_type);
has_highest_eq_stress_2(lq2.global_num) = false;
}
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
void NeighborhoodMaxCriterion::cleanupExtraGhostElements(const ElementTypeMap<UInt> & nb_ghost_protected) {
Mesh & mesh = this->model.getMesh();
/// create remove elements event
RemovedElementsEvent remove_elem(mesh);
/// create set of ghosts to keep
std::set<Element> relevant_ghost_elements;
PairList::const_iterator first_pair = pair_list[_ghost].begin();
PairList::const_iterator last_pair = pair_list[_ghost].end();
for(;first_pair != last_pair; ++first_pair) {
const IntegrationPoint & q2 = first_pair->second;
relevant_ghost_elements.insert(q2);
}
Array<Element> ghosts_to_erase(0);
Mesh::type_iterator it = mesh.firstType(spatial_dimension, _ghost);
Mesh::type_iterator last_type = mesh.lastType(spatial_dimension, _ghost);
Element element;
element.ghost_type = _ghost;
std::set<Element>::const_iterator end = relevant_ghost_elements.end();
for(; it != last_type; ++it) {
element.type = *it;
UInt nb_ghost_elem = mesh.getNbElement(*it, _ghost);
UInt nb_ghost_elem_protected = 0;
try {
nb_ghost_elem_protected = nb_ghost_protected(*it, _ghost);
} catch (...) {}
if(!remove_elem.getNewNumbering().exists(*it, _ghost))
remove_elem.getNewNumbering().alloc(nb_ghost_elem, 1, *it, _ghost);
else remove_elem.getNewNumbering(*it, _ghost).resize(nb_ghost_elem);
Array<UInt> & new_numbering = remove_elem.getNewNumbering(*it, _ghost);
for (UInt g = 0; g < nb_ghost_elem; ++g) {
element.element = g;
if (element.element >= nb_ghost_elem_protected && relevant_ghost_elements.find(element) == end) {
ghosts_to_erase.push_back(element);
new_numbering(element.element) = UInt(-1);
}
}
/// renumber remaining ghosts
UInt ng = 0;
for (UInt g = 0; g < nb_ghost_elem; ++g) {
if (new_numbering(g) != UInt(-1)) {
new_numbering(g) = ng;
++ng;
}
}
}
mesh.sendEvent(remove_elem);
this->onElementsRemoved(ghosts_to_erase, remove_elem.getNewNumbering(), remove_elem);
}
__END_AKANTU__

Event Timeline