Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91045320
mesh.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 06:50
Size
16 KB
Mime Type
text/x-c
Expires
Sat, Nov 9, 06:50 (2 d)
Engine
blob
Format
Raw Data
Handle
22162439
Attached To
rAKA akantu
mesh.cc
View Options
/**
* @file mesh.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Fri Jan 22 2016
*
* @brief class handling meshes
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <sstream>
#include "aka_config.hh"
/* -------------------------------------------------------------------------- */
#include "element_class.hh"
#include "group_manager_inline_impl.cc"
#include "mesh.hh"
#include "mesh_io.hh"
/* -------------------------------------------------------------------------- */
#include "element_synchronizer.hh"
#include "facet_synchronizer.hh"
#include "mesh_utils_distribution.hh"
#include "node_synchronizer.hh"
#include "communicator.hh"
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
#include "dumper_field.hh"
#include "dumper_internal_material_field.hh"
#endif
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
const
ID
&
id
,
const
MemoryID
&
memory_id
,
Communicator
&
communicator
)
:
Memory
(
id
,
memory_id
),
GroupManager
(
*
this
,
id
+
":group_manager"
,
memory_id
),
nodes_type
(
0
,
1
,
id
+
":nodes_type"
),
connectivities
(
"connectivities"
,
id
,
memory_id
),
ghosts_counters
(
"ghosts_counters"
,
id
,
memory_id
),
normals
(
"normals"
,
id
,
memory_id
),
spatial_dimension
(
spatial_dimension
),
lower_bounds
(
spatial_dimension
,
0.
),
upper_bounds
(
spatial_dimension
,
0.
),
size
(
spatial_dimension
,
0.
),
local_lower_bounds
(
spatial_dimension
,
0.
),
local_upper_bounds
(
spatial_dimension
,
0.
),
mesh_data
(
"mesh_data"
,
id
,
memory_id
),
communicator
(
&
communicator
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
Communicator
&
communicator
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
Mesh
(
spatial_dimension
,
id
,
memory_id
,
communicator
)
{
AKANTU_DEBUG_IN
();
this
->
nodes
=
std
::
make_shared
<
Array
<
Real
>>
(
0
,
spatial_dimension
,
id
+
":coordinates"
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
Mesh
(
spatial_dimension
,
Communicator
::
getStaticCommunicator
(),
id
,
memory_id
)
{}
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
std
::
shared_ptr
<
Array
<
Real
>>
nodes
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
Mesh
(
spatial_dimension
,
id
,
memory_id
,
Communicator
::
getStaticCommunicator
())
{
this
->
nodes
=
nodes
;
this
->
nb_global_nodes
=
this
->
nodes
->
size
();
this
->
nodes_to_elements
.
resize
(
nodes
->
size
());
for
(
auto
&
node_set
:
nodes_to_elements
)
{
node_set
=
std
::
make_unique
<
std
::
set
<
Element
>>
();
}
this
->
computeBoundingBox
();
}
/* -------------------------------------------------------------------------- */
Mesh
&
Mesh
::
initMeshFacets
(
const
ID
&
id
)
{
AKANTU_DEBUG_IN
();
if
(
!
mesh_facets
)
{
mesh_facets
=
std
::
make_unique
<
Mesh
>
(
spatial_dimension
,
this
->
nodes
,
getID
()
+
":"
+
id
,
getMemoryID
());
mesh_facets
->
mesh_parent
=
this
;
mesh_facets
->
is_mesh_facets
=
true
;
if
(
mesh
.
isDistributed
())
{
mesh_facets
->
is_distributed
=
true
;
mesh_facets
->
element_synchronizer
=
std
::
make_unique
<
FacetSynchronizer
>
(
*
mesh_facets
,
mesh
.
getElementSynchronizer
());
}
}
AKANTU_DEBUG_OUT
();
return
*
mesh_facets
;
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
defineMeshParent
(
const
Mesh
&
mesh
)
{
AKANTU_DEBUG_IN
();
this
->
mesh_parent
=
&
mesh
;
this
->
is_mesh_facets
=
true
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Mesh
::~
Mesh
()
=
default
;
/* -------------------------------------------------------------------------- */
void
Mesh
::
read
(
const
std
::
string
&
filename
,
const
MeshIOType
&
mesh_io_type
)
{
MeshIO
mesh_io
;
mesh_io
.
read
(
filename
,
*
this
,
mesh_io_type
);
type_iterator
it
=
this
->
firstType
(
spatial_dimension
,
_not_ghost
,
_ek_not_defined
);
type_iterator
last
=
this
->
lastType
(
spatial_dimension
,
_not_ghost
,
_ek_not_defined
);
if
(
it
==
last
)
AKANTU_EXCEPTION
(
"The mesh contained in the file "
<<
filename
<<
" does not seem to be of the good dimension."
<<
" No element of dimension "
<<
spatial_dimension
<<
" where read."
);
this
->
nb_global_nodes
=
this
->
nodes
->
size
();
this
->
computeBoundingBox
();
this
->
nodes_to_elements
.
resize
(
nodes
->
size
());
for
(
auto
&
node_set
:
nodes_to_elements
)
{
node_set
=
std
::
make_unique
<
std
::
set
<
Element
>>
();
}
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
write
(
const
std
::
string
&
filename
,
const
MeshIOType
&
mesh_io_type
)
{
MeshIO
mesh_io
;
mesh_io
.
write
(
filename
,
*
this
,
mesh_io_type
);
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
)
;
stream
<<
space
<<
"Mesh ["
<<
std
::
endl
;
stream
<<
space
<<
" + id : "
<<
getID
()
<<
std
::
endl
;
stream
<<
space
<<
" + spatial dimension : "
<<
this
->
spatial_dimension
<<
std
::
endl
;
stream
<<
space
<<
" + nodes ["
<<
std
::
endl
;
nodes
->
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" + connectivities ["
<<
std
::
endl
;
connectivities
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" ]"
<<
std
::
endl
;
GroupManager
::
printself
(
stream
,
indent
+
1
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
computeBoundingBox
()
{
AKANTU_DEBUG_IN
();
for
(
UInt
k
=
0
;
k
<
spatial_dimension
;
++
k
)
{
local_lower_bounds
(
k
)
=
std
::
numeric_limits
<
double
>::
max
();
local_upper_bounds
(
k
)
=
-
std
::
numeric_limits
<
double
>::
max
();
}
for
(
UInt
i
=
0
;
i
<
nodes
->
size
();
++
i
)
{
// if(!isPureGhostNode(i))
for
(
UInt
k
=
0
;
k
<
spatial_dimension
;
++
k
)
{
local_lower_bounds
(
k
)
=
std
::
min
(
local_lower_bounds
[
k
],
(
*
nodes
)(
i
,
k
));
local_upper_bounds
(
k
)
=
std
::
max
(
local_upper_bounds
[
k
],
(
*
nodes
)(
i
,
k
));
}
}
if
(
this
->
is_distributed
)
{
Matrix
<
Real
>
reduce_bounds
(
spatial_dimension
,
2
);
for
(
UInt
k
=
0
;
k
<
spatial_dimension
;
++
k
)
{
reduce_bounds
(
k
,
0
)
=
local_lower_bounds
(
k
);
reduce_bounds
(
k
,
1
)
=
-
local_upper_bounds
(
k
);
}
communicator
->
allReduce
(
reduce_bounds
,
SynchronizerOperation
::
_min
);
for
(
UInt
k
=
0
;
k
<
spatial_dimension
;
++
k
)
{
lower_bounds
(
k
)
=
reduce_bounds
(
k
,
0
);
upper_bounds
(
k
)
=
-
reduce_bounds
(
k
,
1
);
}
}
else
{
this
->
lower_bounds
=
this
->
local_lower_bounds
;
this
->
upper_bounds
=
this
->
local_upper_bounds
;
}
size
=
upper_bounds
-
lower_bounds
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
initNormals
()
{
normals
.
initialize
(
*
this
,
_nb_component
=
spatial_dimension
,
_spatial_dimension
=
spatial_dimension
,
_element_kind
=
_ek_not_defined
);
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
getGlobalConnectivity
(
ElementTypeMapArray
<
UInt
>
&
global_connectivity
)
{
AKANTU_DEBUG_IN
();
for
(
auto
&&
ghost_type
:
ghost_types
)
{
for
(
auto
type
:
global_connectivity
.
elementTypes
(
_ghost_type
=
ghost_type
))
{
if
(
not
connectivities
.
exists
(
type
,
ghost_type
))
continue
;
auto
&
local_conn
=
connectivities
(
type
,
ghost_type
);
auto
&
g_connectivity
=
global_connectivity
(
type
,
ghost_type
);
UInt
nb_nodes
=
local_conn
.
size
()
*
local_conn
.
getNbComponent
();
if
(
not
nodes_global_ids
&&
is_mesh_facets
)
{
std
::
transform
(
local_conn
.
begin_reinterpret
(
nb_nodes
),
local_conn
.
end_reinterpret
(
nb_nodes
),
g_connectivity
.
begin_reinterpret
(
nb_nodes
),
[
&
node_ids
=
*
mesh_parent
->
nodes_global_ids
](
UInt
l
)
->
UInt
{
return
node_ids
(
l
);
});
}
else
{
std
::
transform
(
local_conn
.
begin_reinterpret
(
nb_nodes
),
local_conn
.
end_reinterpret
(
nb_nodes
),
g_connectivity
.
begin_reinterpret
(
nb_nodes
),
[
&
node_ids
=
*
nodes_global_ids
](
UInt
l
)
->
UInt
{
return
node_ids
(
l
);
});
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
DumperIOHelper
&
Mesh
::
getGroupDumper
(
const
std
::
string
&
dumper_name
,
const
std
::
string
&
group_name
)
{
if
(
group_name
==
"all"
)
return
this
->
getDumper
(
dumper_name
);
else
return
element_groups
[
group_name
]
->
getDumper
(
dumper_name
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
ElementTypeMap
<
UInt
>
Mesh
::
getNbDataPerElem
(
ElementTypeMapArray
<
T
>
&
arrays
,
const
ElementKind
&
element_kind
)
{
ElementTypeMap
<
UInt
>
nb_data_per_elem
;
for
(
auto
type
:
elementTypes
(
spatial_dimension
,
_not_ghost
,
element_kind
))
{
UInt
nb_elements
=
this
->
getNbElement
(
type
);
auto
&
array
=
arrays
(
type
);
nb_data_per_elem
(
type
)
=
array
.
getNbComponent
()
*
array
.
size
();
nb_data_per_elem
(
type
)
/=
nb_elements
;
}
return
nb_data_per_elem
;
}
/* -------------------------------------------------------------------------- */
template
ElementTypeMap
<
UInt
>
Mesh
::
getNbDataPerElem
(
ElementTypeMapArray
<
Real
>
&
array
,
const
ElementKind
&
element_kind
);
template
ElementTypeMap
<
UInt
>
Mesh
::
getNbDataPerElem
(
ElementTypeMapArray
<
UInt
>
&
array
,
const
ElementKind
&
element_kind
);
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
template
<
typename
T
>
dumper
::
Field
*
Mesh
::
createFieldFromAttachedData
(
const
std
::
string
&
field_id
,
const
std
::
string
&
group_name
,
const
ElementKind
&
element_kind
)
{
dumper
::
Field
*
field
=
nullptr
;
ElementTypeMapArray
<
T
>
*
internal
=
nullptr
;
try
{
internal
=
&
(
this
->
getData
<
T
>
(
field_id
));
}
catch
(...)
{
return
nullptr
;
}
ElementTypeMap
<
UInt
>
nb_data_per_elem
=
this
->
getNbDataPerElem
(
*
internal
,
element_kind
);
field
=
this
->
createElementalField
<
T
,
dumper
::
InternalMaterialField
>
(
*
internal
,
group_name
,
this
->
spatial_dimension
,
element_kind
,
nb_data_per_elem
);
return
field
;
}
template
dumper
::
Field
*
Mesh
::
createFieldFromAttachedData
<
Real
>
(
const
std
::
string
&
field_id
,
const
std
::
string
&
group_name
,
const
ElementKind
&
element_kind
);
template
dumper
::
Field
*
Mesh
::
createFieldFromAttachedData
<
UInt
>
(
const
std
::
string
&
field_id
,
const
std
::
string
&
group_name
,
const
ElementKind
&
element_kind
);
#endif
/* -------------------------------------------------------------------------- */
void
Mesh
::
distribute
()
{
this
->
distribute
(
Communicator
::
getStaticCommunicator
());
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
distribute
(
Communicator
&
communicator
)
{
AKANTU_DEBUG_ASSERT
(
is_distributed
==
false
,
"This mesh is already distribute"
);
this
->
communicator
=
&
communicator
;
this
->
element_synchronizer
=
std
::
make_unique
<
ElementSynchronizer
>
(
*
this
,
this
->
getID
()
+
":element_synchronizer"
,
this
->
getMemoryID
(),
true
);
this
->
node_synchronizer
=
std
::
make_unique
<
NodeSynchronizer
>
(
*
this
,
this
->
getID
()
+
":node_synchronizer"
,
this
->
getMemoryID
(),
true
);
Int
psize
=
this
->
communicator
->
getNbProc
();
#ifdef AKANTU_USE_SCOTCH
Int
prank
=
this
->
communicator
->
whoAmI
();
if
(
prank
==
0
)
{
MeshPartitionScotch
partition
(
*
this
,
spatial_dimension
);
partition
.
partitionate
(
psize
);
MeshUtilsDistribution
::
distributeMeshCentralized
(
*
this
,
0
,
partition
);
}
else
{
MeshUtilsDistribution
::
distributeMeshCentralized
(
*
this
,
0
);
}
#else
if
(
!
(
psize
==
1
))
{
AKANTU_DEBUG_ERROR
(
"Cannot distribute a mesh without a partitioning tool"
);
}
#endif
this
->
is_distributed
=
true
;
this
->
computeBoundingBox
();
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
getAssociatedElements
(
const
Array
<
UInt
>
&
node_list
,
Array
<
Element
>
&
elements
)
{
for
(
const
auto
&
node
:
node_list
)
for
(
const
auto
&
element
:
*
nodes_to_elements
[
node
])
elements
.
push_back
(
element
);
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
fillNodesToElements
()
{
Element
e
;
UInt
nb_nodes
=
nodes
->
size
();
for
(
UInt
n
=
0
;
n
<
nb_nodes
;
++
n
)
{
if
(
this
->
nodes_to_elements
[
n
])
this
->
nodes_to_elements
[
n
]
->
clear
();
else
this
->
nodes_to_elements
[
n
]
=
std
::
make_unique
<
std
::
set
<
Element
>>
();
}
for
(
auto
ghost_type
:
ghost_types
)
{
e
.
ghost_type
=
ghost_type
;
for
(
const
auto
&
type
:
elementTypes
(
spatial_dimension
,
ghost_type
,
_ek_not_defined
))
{
e
.
type
=
type
;
UInt
nb_element
=
this
->
getNbElement
(
type
,
ghost_type
);
Array
<
UInt
>::
const_iterator
<
Vector
<
UInt
>>
conn_it
=
connectivities
(
type
,
ghost_type
)
.
begin
(
Mesh
::
getNbNodesPerElement
(
type
));
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
conn_it
)
{
e
.
element
=
el
;
const
Vector
<
UInt
>
&
conn
=
*
conn_it
;
for
(
UInt
n
=
0
;
n
<
conn
.
size
();
++
n
)
nodes_to_elements
[
conn
(
n
)]
->
insert
(
e
);
}
}
}
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
eraseElements
(
const
Array
<
Element
>
&
elements
)
{
ElementTypeMap
<
UInt
>
last_element
;
RemovedElementsEvent
event
(
*
this
);
auto
&
remove_list
=
event
.
getList
();
auto
&
new_numbering
=
event
.
getNewNumbering
();
for
(
auto
&&
el
:
elements
)
{
if
(
el
.
ghost_type
!=
_not_ghost
)
{
auto
&
count
=
ghosts_counters
(
el
);
--
count
;
if
(
count
>
0
)
continue
;
}
remove_list
.
push_back
(
el
);
if
(
not
last_element
.
exists
(
el
.
type
,
el
.
ghost_type
))
{
UInt
nb_element
=
mesh
.
getNbElement
(
el
.
type
,
el
.
ghost_type
);
last_element
(
nb_element
-
1
,
el
.
type
,
el
.
ghost_type
);
auto
&
numbering
=
new_numbering
.
alloc
(
nb_element
,
1
,
el
.
type
,
el
.
ghost_type
);
for
(
auto
&&
pair
:
enumerate
(
numbering
))
{
std
::
get
<
1
>
(
pair
)
=
std
::
get
<
0
>
(
pair
);
}
}
UInt
&
pos
=
last_element
(
el
.
type
,
el
.
ghost_type
);
auto
&
numbering
=
new_numbering
(
el
.
type
,
el
.
ghost_type
);
numbering
(
el
.
element
)
=
UInt
(
-
1
);
numbering
(
pos
)
=
el
.
element
;
--
pos
;
}
this
->
sendEvent
(
event
);
}
}
// namespace akantu
Event Timeline
Log In to Comment