Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90882378
aka_array_tmpl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 15:34
Size
46 KB
Mime Type
text/x-c++
Expires
Thu, Nov 7, 15:34 (2 d)
Engine
blob
Format
Raw Data
Handle
22152003
Attached To
rAKA akantu
aka_array_tmpl.hh
View Options
/**
* @file aka_array_tmpl.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Thu Jul 15 2010
* @date last modification: Fri Feb 26 2021
*
* @brief Inline functions of the classes Array<T> and ArrayBase
*
*
* @section LICENSE
*
* Copyright (©) 2010-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
/* Inline Functions Array<T> */
/* -------------------------------------------------------------------------- */
#include "aka_array.hh" // NOLINT
/* -------------------------------------------------------------------------- */
#include <memory>
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_AKA_ARRAY_TMPL_HH_
#define AKANTU_AKA_ARRAY_TMPL_HH_
namespace akantu {
namespace debug {
struct ArrayException : public Exception {};
} // namespace debug
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
ArrayDataLayer<T, allocation_trait>::ArrayDataLayer(UInt size,
UInt nb_component,
const ID & id)
: ArrayBase(id) {
allocate(size, nb_component);
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
ArrayDataLayer<T, allocation_trait>::ArrayDataLayer(UInt size,
UInt nb_component,
const_reference value,
const ID & id)
: ArrayBase(id) {
allocate(size, nb_component, value);
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
ArrayDataLayer<T, allocation_trait>::ArrayDataLayer(const ArrayDataLayer & vect,
const ID & id)
: ArrayBase(vect, id) {
this->data_storage = vect.data_storage;
this->size_ = vect.size_;
this->nb_component = vect.nb_component;
this->values = this->data_storage.data();
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
ArrayDataLayer<T, allocation_trait>::ArrayDataLayer(
const std::vector<value_type> & vect) {
this->data_storage = vect;
this->size_ = vect.size();
this->nb_component = 1;
this->values = this->data_storage.data();
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
ArrayDataLayer<T, allocation_trait> &
ArrayDataLayer<T, allocation_trait>::operator=(const ArrayDataLayer & other) {
if (this != &other) {
this->data_storage = other.data_storage;
this->nb_component = other.nb_component;
this->size_ = other.size_;
this->values = this->data_storage.data();
}
return *this;
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
void ArrayDataLayer<T, allocation_trait>::allocate(UInt new_size,
UInt nb_component) {
this->nb_component = nb_component;
this->resize(new_size);
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
void ArrayDataLayer<T, allocation_trait>::allocate(UInt new_size,
UInt nb_component,
const T & val) {
this->nb_component = nb_component;
this->resize(new_size, val);
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
void ArrayDataLayer<T, allocation_trait>::resize(UInt new_size) {
this->data_storage.resize(new_size * this->nb_component);
this->values = this->data_storage.data();
this->size_ = new_size;
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
void ArrayDataLayer<T, allocation_trait>::resize(UInt new_size,
const T & value) {
this->data_storage.resize(new_size * this->nb_component, value);
this->values = this->data_storage.data();
this->size_ = new_size;
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
void ArrayDataLayer<T, allocation_trait>::reserve(UInt size, UInt new_size) {
if (new_size != UInt(-1)) {
this->data_storage.resize(new_size * this->nb_component);
}
this->data_storage.reserve(size * this->nb_component);
this->values = this->data_storage.data();
}
/* -------------------------------------------------------------------------- */
/**
* append a tuple to the array with the value value for all components
* @param value the new last tuple or the array will contain nb_component copies
* of value
*/
template <typename T, ArrayAllocationType allocation_trait>
inline void ArrayDataLayer<T, allocation_trait>::push_back(const T & value) {
this->data_storage.push_back(value);
this->values = this->data_storage.data();
this->size_ += 1;
}
/* -------------------------------------------------------------------------- */
/**
* append a matrix or a vector to the array
* @param new_elem a reference to a Matrix<T> or Vector<T> */
template <typename T, ArrayAllocationType allocation_trait>
template <template <typename> class C, typename>
inline void
ArrayDataLayer<T, allocation_trait>::push_back(const C<T> & new_elem) {
AKANTU_DEBUG_ASSERT(
nb_component == new_elem.size(),
"The vector("
<< new_elem.size()
<< ") as not a size compatible with the Array (nb_component="
<< nb_component << ").");
for (UInt i = 0; i < new_elem.size(); ++i) {
this->data_storage.push_back(new_elem[i]);
}
this->values = this->data_storage.data();
this->size_ += 1;
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
inline UInt ArrayDataLayer<T, allocation_trait>::getAllocatedSize() const {
return this->data_storage.capacity() / this->nb_component;
}
/* -------------------------------------------------------------------------- */
template <typename T, ArrayAllocationType allocation_trait>
inline UInt ArrayDataLayer<T, allocation_trait>::getMemorySize() const {
return this->data_storage.capacity() * sizeof(T);
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
template <typename T>
class ArrayDataLayer<T, ArrayAllocationType::_pod> : public ArrayBase {
public:
using value_type = T;
using reference = value_type &;
using pointer_type = value_type *;
using const_reference = const value_type &;
public:
~ArrayDataLayer() override { deallocate(); }
/// Allocation of a new vector
ArrayDataLayer(UInt size = 0, UInt nb_component = 1, const ID & id = "")
: ArrayBase(id) {
allocate(size, nb_component);
}
/// Allocation of a new vector with a default value
ArrayDataLayer(UInt size, UInt nb_component, const_reference value,
const ID & id = "")
: ArrayBase(id) {
allocate(size, nb_component, value);
}
/// Copy constructor (deep copy)
ArrayDataLayer(const ArrayDataLayer & vect, const ID & id = "")
: ArrayBase(vect, id) {
allocate(vect.size(), vect.getNbComponent());
std::copy_n(vect.storage(), this->size_ * this->nb_component, values);
}
/// Copy constructor (deep copy)
explicit ArrayDataLayer(const std::vector<value_type> & vect) {
allocate(vect.size(), 1);
std::copy_n(vect.data(), this->size_ * this->nb_component, values);
}
// copy operator
inline ArrayDataLayer & operator=(const ArrayDataLayer & other) {
if (this != &other) {
allocate(other.size(), other.getNbComponent());
std::copy_n(other.storage(), this->size_ * this->nb_component, values);
}
return *this;
}
// move constructor
inline ArrayDataLayer(ArrayDataLayer && other) noexcept = default;
// move assign
inline ArrayDataLayer & operator=(ArrayDataLayer && other) noexcept = default;
protected:
// deallocate the memory
virtual void deallocate() {
// NOLINTNEXTLINE(cppcoreguidelines-owning-memory,
// cppcoreguidelines-no-malloc)
free(this->values);
}
// allocate the memory
virtual inline void allocate(UInt size, UInt nb_component) {
if (size != 0) { // malloc can return a non NULL pointer in case size is 0
this->values = static_cast<T *>( // NOLINT
std::malloc(nb_component * size * sizeof(T))); // NOLINT
}
if (this->values == nullptr and size != 0) {
throw std::bad_alloc();
}
this->nb_component = nb_component;
this->allocated_size = this->size_ = size;
}
// allocate and initialize the memory
virtual inline void allocate(UInt size, UInt nb_component, const T & value) {
allocate(size, nb_component);
std::fill_n(values, size * nb_component, value);
}
public:
/// append a tuple of size nb_component containing value
inline void push_back(const_reference value) {
resize(this->size_ + 1, value);
}
/// append a Vector or a Matrix
template <template <typename> class C,
typename = std::enable_if_t<aka::is_tensor<C<T>>::value or
aka::is_tensor_proxy<C<T>>::value>>
inline void push_back(const C<T> & new_elem) {
AKANTU_DEBUG_ASSERT(
nb_component == new_elem.size(),
"The vector("
<< new_elem.size()
<< ") as not a size compatible with the Array (nb_component="
<< nb_component << ").");
this->resize(this->size_ + 1);
std::copy_n(new_elem.storage(), new_elem.size(),
values + this->nb_component * (this->size_ - 1));
}
/// changes the allocated size but not the size
virtual void reserve(UInt size, UInt new_size = UInt(-1)) {
UInt tmp_size = this->size_;
if (new_size != UInt(-1)) {
tmp_size = new_size;
}
this->resize(size);
this->size_ = std::min(this->size_, tmp_size);
}
/// change the size of the Array
virtual void resize(UInt size) {
if (size * this->nb_component == 0) {
free(values); // NOLINT: cppcoreguidelines-no-malloc
values = nullptr;
this->allocated_size = 0;
} else {
if (this->values == nullptr) {
this->allocate(size, this->nb_component);
return;
}
Int diff = size - allocated_size;
UInt size_to_allocate = (std::abs(diff) > AKANTU_MIN_ALLOCATION) ? size
: (diff > 0)
? allocated_size + AKANTU_MIN_ALLOCATION
: allocated_size;
if (size_to_allocate ==
allocated_size) { // otherwhy the reserve + push_back might fail...
this->size_ = size;
return;
}
auto * tmp_ptr = reinterpret_cast<T *>( // NOLINT
realloc(this->values,
size_to_allocate * this->nb_component * sizeof(T)));
if (tmp_ptr == nullptr) {
throw std::bad_alloc();
}
this->values = tmp_ptr;
this->allocated_size = size_to_allocate;
}
this->size_ = size;
}
/// change the size of the Array and initialize the values
virtual void resize(UInt size, const T & val) {
UInt tmp_size = this->size_;
this->resize(size);
if (size > tmp_size) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
std::fill_n(values + this->nb_component * tmp_size,
(size - tmp_size) * this->nb_component, val);
}
}
/// get the amount of space allocated in bytes
inline UInt getMemorySize() const final {
return this->allocated_size * this->nb_component * sizeof(T);
}
/// Get the real size allocated in memory
inline UInt getAllocatedSize() const { return this->allocated_size; }
/// give the address of the memory allocated for this vector
T * storage() const { return values; };
protected:
/// allocation type agnostic data access
T * values{nullptr};
UInt allocated_size{0};
};
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
inline auto Array<T, is_scal>::operator()(UInt i, UInt j) -> reference {
AKANTU_DEBUG_ASSERT(this->size_ > 0,
"The array \"" << this->id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < this->size_) && (j < this->nb_component),
"The value at position ["
<< i << "," << j << "] is out of range in array \""
<< this->id << "\"");
return this->values[i * this->nb_component + j];
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
inline auto Array<T, is_scal>::operator()(UInt i, UInt j) const
-> const_reference {
AKANTU_DEBUG_ASSERT(this->size_ > 0,
"The array \"" << this->id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < this->size_) && (j < this->nb_component),
"The value at position ["
<< i << "," << j << "] is out of range in array \""
<< this->id << "\"");
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
return this->values[i * this->nb_component + j];
}
template <class T, bool is_scal>
inline auto Array<T, is_scal>::operator[](UInt i) -> reference {
AKANTU_DEBUG_ASSERT(this->size_ > 0,
"The array \"" << this->id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < this->size_ * this->nb_component),
"The value at position ["
<< i << "] is out of range in array \"" << this->id
<< "\"");
return this->values[i];
}
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
inline auto Array<T, is_scal>::operator[](UInt i) const -> const_reference {
AKANTU_DEBUG_ASSERT(this->size_ > 0,
"The array \"" << this->id << "\" is empty");
AKANTU_DEBUG_ASSERT((i < this->size_ * this->nb_component),
"The value at position ["
<< i << "] is out of range in array \"" << this->id
<< "\"");
return this->values[i];
}
/* -------------------------------------------------------------------------- */
/**
* erase an element. If the erased element is not the last of the array, the
* last element is moved into the hole in order to maintain contiguity. This
* may invalidate existing iterators (For instance an iterator obtained by
* Array::end() is no longer correct) and will change the order of the
* elements.
* @param i index of element to erase
*/
template <class T, bool is_scal> inline void Array<T, is_scal>::erase(UInt i) {
AKANTU_DEBUG_IN();
AKANTU_DEBUG_ASSERT((this->size_ > 0), "The array is empty");
AKANTU_DEBUG_ASSERT((i < this->size_), "The element at position ["
<< i << "] is out of range (" << i
<< ">=" << this->size_ << ")");
if (i != (this->size_ - 1)) {
for (UInt j = 0; j < this->nb_component; ++j) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
this->values[i * this->nb_component + j] =
this->values[(this->size_ - 1) * this->nb_component + j];
}
}
this->resize(this->size_ - 1);
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
/**
* Subtract another array entry by entry from this array in place. Both arrays
* must
* have the same size and nb_component. If the arrays have different shapes,
* code compiled in debug mode will throw an expeption and optimised code
* will behave in an unpredicted manner
* @param other array to subtract from this
* @return reference to modified this
*/
template <class T, bool is_scal>
Array<T, is_scal> &
Array<T, is_scal>::operator-=(const Array<T, is_scal> & other) {
AKANTU_DEBUG_ASSERT((this->size_ == other.size_) &&
(this->nb_component == other.nb_component),
"The too array don't have the same sizes");
T * a = this->values;
T * b = other.storage();
for (UInt i = 0; i < this->size_ * this->nb_component; ++i) {
*a -= *b;
++a;
++b;
}
return *this;
}
/* --------------------------------------------------------------------------
*/
/**
* Add another array entry by entry to this array in
* place. Both arrays must have the same size and
* nb_component. If the arrays have different shapes, code
* compiled in debug mode will throw an expeption and
* optimised code will behave in an unpredicted manner
* @param other array to add to this
* @return reference to modified this
*/
template <class T, bool is_scal>
Array<T, is_scal> &
Array<T, is_scal>::operator+=(const Array<T, is_scal> & other) {
AKANTU_DEBUG_ASSERT((this->size_ == other.size()) &&
(this->nb_component == other.nb_component),
"The too array don't have the same sizes");
T * a = this->values;
T * b = other.storage();
for (UInt i = 0; i < this->size_ * this->nb_component; ++i) {
*a++ += *b++;
}
return *this;
}
/* --------------------------------------------------------------------------
*/
/**
* Multiply all entries of this array by a scalar in place
* @param alpha scalar multiplicant
* @return reference to modified this
*/
template <class T, bool is_scal>
Array<T, is_scal> & Array<T, is_scal>::operator*=(const T & alpha) {
T * a = this->values;
for (UInt i = 0; i < this->size_ * this->nb_component; ++i) {
*a++ *= alpha;
}
return *this;
}
/* --------------------------------------------------------------------------
*/
/**
* Compare this array element by element to another.
* @param other array to compare to
* @return true it all element are equal and arrays have
* the same shape, else false
*/
template <class T, bool is_scal>
bool Array<T, is_scal>::operator==(const Array<T, is_scal> & other) const {
bool equal = this->nb_component == other.nb_component &&
this->size_ == other.size_ && this->id == other.id;
if (not equal) {
return false;
}
if (this->values == other.storage()) {
return true;
}
// NOLINTNEXTLINE(cppcoreguidelines-pro-bounds-pointer-arithmetic)
return std::equal(this->values,
this->values + this->size_ * this->nb_component,
other.storage());
}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
bool Array<T, is_scal>::operator!=(const Array<T, is_scal> & other) const {
return !operator==(other);
}
/* --------------------------------------------------------------------------
*/
/**
* set all tuples of the array to a given vector or matrix
* @param vm Matrix or Vector to fill the array with
*/
template <class T, bool is_scal>
template <template <typename> class C, typename>
inline void Array<T, is_scal>::set(const C<T> & vm) {
AKANTU_DEBUG_ASSERT(this->nb_component == vm.size(),
"The size of the object does not "
"match the number of components");
for (T * it = this->values;
it < this->values + this->nb_component * this->size_;
it += this->nb_component) {
std::copy_n(vm.storage(), this->nb_component, it);
}
}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
void Array<T, is_scal>::append(const Array<T> & other) {
AKANTU_DEBUG_ASSERT(this->nb_component == other.nb_component,
"Cannot append an array with a "
"different number of component");
UInt old_size = this->size_;
this->resize(this->size_ + other.size());
T * tmp = this->values + this->nb_component * old_size;
std::copy_n(other.storage(), other.size() * this->nb_component, tmp);
}
/* --------------------------------------------------------------------------
*/
/* Functions Array<T, is_scal> */
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
Array<T, is_scal>::Array(UInt size, UInt nb_component, const ID & id)
: parent(size, nb_component, id) {}
template <>
inline Array<std::string, false>::Array(UInt size, UInt nb_component,
const ID & id)
: parent(size, nb_component, "", id) {}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
Array<T, is_scal>::Array(UInt size, UInt nb_component, const_reference value,
const ID & id)
: parent(size, nb_component, value, id) {}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
Array<T, is_scal>::Array(const Array & vect, const ID & id)
: parent(vect, id) {}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
Array<T, is_scal> &
Array<T, is_scal>::operator=(const Array<T, is_scal> & other) {
AKANTU_DEBUG_WARNING("You are copying the array "
<< this->id << " are you sure it is on purpose");
if (&other == this) {
return *this;
}
parent::operator=(other);
return *this;
}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
Array<T, is_scal>::Array(const std::vector<T> & vect) : parent(vect) {}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal> Array<T, is_scal>::~Array() = default;
/* --------------------------------------------------------------------------
*/
/**
* search elem in the array, return the position of the
* first occurrence or -1 if not found
* @param elem the element to look for
* @return index of the first occurrence of elem or -1 if
* elem is not present
*/
template <class T, bool is_scal>
UInt Array<T, is_scal>::find(const_reference elem) const {
AKANTU_DEBUG_IN();
auto begin = this->begin();
auto end = this->end();
auto it = std::find(begin, end, elem);
AKANTU_DEBUG_OUT();
return (it != end) ? it - begin : UInt(-1);
}
/* --------------------------------------------------------------------------
*/
// template <class T, bool is_scal> UInt Array<T,
// is_scal>::find(T elem[]) const
// {
// AKANTU_DEBUG_IN();
// T * it = this->values;
// UInt i = 0;
// for (; i < this->size_; ++i) {
// if (*it == elem[0]) {
// T * cit = it;
// UInt c = 0;
// for (; (c < this->nb_component) && (*cit ==
// elem[c]); ++c, ++cit)
// ;
// if (c == this->nb_component) {
// AKANTU_DEBUG_OUT();
// return i;
// }
// }
// it += this->nb_component;
// }
// return UInt(-1);
// }
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
template <template <typename> class C, typename>
inline UInt Array<T, is_scal>::find(const C<T> & elem) {
AKANTU_DEBUG_ASSERT(elem.size() == this->nb_component,
"Cannot find an element with a wrong size ("
<< elem.size() << ") != " << this->nb_component);
return this->find(*elem.storage());
}
/* --------------------------------------------------------------------------
*/
/**
* copy the content of another array. This overwrites the
* current content.
* @param other Array to copy into this array. It has to
* have the same nb_component as this. If compiled in
* debug mode, an incorrect other will result in an
* exception being thrown. Optimised code may result in
* unpredicted behaviour.
* @param no_sanity_check turns off all checkes
*/
template <class T, bool is_scal>
void Array<T, is_scal>::copy(const Array<T, is_scal> & other,
bool no_sanity_check) {
AKANTU_DEBUG_IN();
if (not no_sanity_check and (other.nb_component != this->nb_component)) {
AKANTU_ERROR("The two arrays do not have the same "
"number of components");
}
this->resize((other.size_ * other.nb_component) / this->nb_component);
std::copy_n(other.storage(), this->size_ * this->nb_component, this->values);
AKANTU_DEBUG_OUT();
}
/* --------------------------------------------------------------------------
*/
template <bool is_scal> class ArrayPrintHelper {
public:
template <typename T>
static void print_content(const Array<T> & vect, std::ostream & stream,
int indent) {
std::string space(indent, AKANTU_INDENT);
stream << space << " + values : {";
for (UInt i = 0; i < vect.size(); ++i) {
stream << "{";
for (UInt j = 0; j < vect.getNbComponent(); ++j) {
stream << vect(i, j);
if (j != vect.getNbComponent() - 1) {
stream << ", ";
}
}
stream << "}";
if (i != vect.size() - 1) {
stream << ", ";
}
}
stream << "}" << std::endl;
}
};
template <> class ArrayPrintHelper<false> {
public:
template <typename T>
static void print_content(__attribute__((unused)) const Array<T> & vect,
__attribute__((unused)) std::ostream & stream,
__attribute__((unused)) int indent) {}
};
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
void Array<T, is_scal>::printself(std::ostream & stream, int indent) const {
std::string space(indent, AKANTU_INDENT);
std::streamsize prec = stream.precision();
std::ios_base::fmtflags ff = stream.flags();
stream.setf(std::ios_base::showbase);
stream.precision(2);
stream << space << "Array<" << debug::demangle(typeid(T).name()) << "> ["
<< std::endl;
stream << space << " + id : " << this->id << std::endl;
stream << space << " + size : " << this->size_ << std::endl;
stream << space << " + nb_component : " << this->nb_component << std::endl;
stream << space << " + allocated size : " << this->getAllocatedSize()
<< std::endl;
stream << space
<< " + memory size : " << printMemorySize<T>(this->getMemorySize())
<< std::endl;
if (not AKANTU_DEBUG_LEVEL_IS_TEST()) {
stream << space << " + address : " << std::hex << this->values
<< std::dec << std::endl;
}
stream.precision(prec);
stream.flags(ff);
if (AKANTU_DEBUG_TEST(dblDump) || AKANTU_DEBUG_LEVEL_IS_TEST()) {
ArrayPrintHelper<is_scal or std::is_enum<T>::value>::print_content(
*this, stream, indent);
}
stream << space << "]" << std::endl;
}
/* --------------------------------------------------------------------------
*/
/* Inline Functions ArrayBase */
/* --------------------------------------------------------------------------
*/
// inline bool ArrayBase::empty() { return (this->size_ ==
// 0); }
/* --------------------------------------------------------------------------
*/
/* Iterators */
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
template <class R, class daughter, class IR, bool is_tensor>
class Array<T, is_scal>::iterator_internal {
public:
using value_type = R;
using pointer = R *;
using reference = R &;
using const_reference = const R &;
using internal_value_type = IR;
using internal_pointer = IR *;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
static_assert(not is_tensor, "Cannot handle tensors");
public:
iterator_internal(pointer data = nullptr) : ret(data), initial(data){};
iterator_internal(const iterator_internal & it) = default;
iterator_internal(iterator_internal && it) noexcept = default;
virtual ~iterator_internal() = default;
inline iterator_internal & operator=(const iterator_internal & it) = default;
inline iterator_internal &
operator=(iterator_internal && it) noexcept = default;
UInt getCurrentIndex() { return (this->ret - this->initial); };
inline reference operator*() { return *ret; };
inline const_reference operator*() const { return *ret; };
inline pointer operator->() { return ret; };
inline daughter & operator++() {
++ret;
return static_cast<daughter &>(*this);
};
inline daughter & operator--() {
--ret;
return static_cast<daughter &>(*this);
};
inline daughter & operator+=(const UInt n) {
ret += n;
return static_cast<daughter &>(*this);
}
inline daughter & operator-=(const UInt n) {
ret -= n;
return static_cast<daughter &>(*this);
}
inline reference operator[](const UInt n) { return ret[n]; }
inline bool operator==(const iterator_internal & other) const {
return ret == other.ret;
}
inline bool operator!=(const iterator_internal & other) const {
return ret != other.ret;
}
inline bool operator<(const iterator_internal & other) const {
return ret < other.ret;
}
inline bool operator<=(const iterator_internal & other) const {
return ret <= other.ret;
}
inline bool operator>(const iterator_internal & other) const {
return ret > other.ret;
}
inline bool operator>=(const iterator_internal & other) const {
return ret >= other.ret;
}
inline daughter operator-(difference_type n) { return daughter(ret - n); }
inline daughter operator+(difference_type n) { return daughter(ret + n); }
inline difference_type operator-(const iterator_internal & b) {
return ret - b.ret;
}
inline pointer data() const { return ret; }
protected:
pointer ret{nullptr};
pointer initial{nullptr};
};
/* --------------------------------------------------------------------------
*/
/**
* Specialization for scalar types
*/
template <class T, bool is_scal>
template <class R, class daughter, class IR>
class Array<T, is_scal>::iterator_internal<R, daughter, IR, true> {
public:
using value_type = R;
using pointer = R *;
using pointer_type = typename Array<T, is_scal>::pointer_type;
using reference = R &;
using proxy = typename R::proxy;
using const_proxy = const typename R::proxy;
using const_reference = const R &;
using internal_value_type = IR;
using internal_pointer = IR *;
using difference_type = std::ptrdiff_t;
using iterator_category = std::random_access_iterator_tag;
public:
iterator_internal() = default;
iterator_internal(pointer_type data, UInt _offset)
: _offset(_offset), initial(data), ret(nullptr), ret_ptr(data) {
AKANTU_ERROR("The constructor should never be called "
"it is just an ugly trick...");
}
iterator_internal(std::unique_ptr<internal_value_type> && wrapped)
: _offset(wrapped->size()), initial(wrapped->storage()),
ret(std::move(wrapped)), ret_ptr(ret->storage()) {}
iterator_internal(const iterator_internal & it) {
if (this != &it) {
this->_offset = it._offset;
this->initial = it.initial;
this->ret_ptr = it.ret_ptr;
this->ret = std::make_unique<internal_value_type>(*it.ret, false);
}
}
iterator_internal(iterator_internal && it) noexcept = default;
virtual ~iterator_internal() = default;
inline iterator_internal & operator=(const iterator_internal & it) {
if (this != &it) {
this->_offset = it._offset;
this->initial = it.initial;
this->ret_ptr = it.ret_ptr;
if (this->ret) {
this->ret->shallowCopy(*it.ret);
} else {
this->ret = std::make_unique<internal_value_type>(*it.ret, false);
}
}
return *this;
}
inline iterator_internal &
operator=(iterator_internal && it) noexcept = default;
UInt getCurrentIndex() {
return (this->ret_ptr - this->initial) / this->_offset;
};
inline reference operator*() {
ret->values = ret_ptr;
return *ret;
};
inline const_reference operator*() const {
ret->values = ret_ptr;
return *ret;
};
inline pointer operator->() {
ret->values = ret_ptr;
return ret.get();
};
inline daughter & operator++() {
ret_ptr += _offset;
return static_cast<daughter &>(*this);
};
inline daughter & operator--() {
ret_ptr -= _offset;
return static_cast<daughter &>(*this);
};
inline daughter & operator+=(const UInt n) {
ret_ptr += _offset * n;
return static_cast<daughter &>(*this);
}
inline daughter & operator-=(const UInt n) {
ret_ptr -= _offset * n;
return static_cast<daughter &>(*this);
}
inline proxy operator[](const UInt n) {
ret->values = ret_ptr + n * _offset;
return proxy(*ret);
}
inline const_proxy operator[](const UInt n) const { // NOLINT
ret->values = ret_ptr + n * _offset;
return const_proxy(*ret);
}
inline bool operator==(const iterator_internal & other) const {
return this->ret_ptr == other.ret_ptr;
}
inline bool operator!=(const iterator_internal & other) const {
return this->ret_ptr != other.ret_ptr;
}
inline bool operator<(const iterator_internal & other) const {
return this->ret_ptr < other.ret_ptr;
}
inline bool operator<=(const iterator_internal & other) const {
return this->ret_ptr <= other.ret_ptr;
}
inline bool operator>(const iterator_internal & other) const {
return this->ret_ptr > other.ret_ptr;
}
inline bool operator>=(const iterator_internal & other) const {
return this->ret_ptr >= other.ret_ptr;
}
inline daughter operator+(difference_type n) {
daughter tmp(static_cast<daughter &>(*this));
tmp += n;
return tmp;
}
inline daughter operator-(difference_type n) {
daughter tmp(static_cast<daughter &>(*this));
tmp -= n;
return tmp;
}
inline difference_type operator-(const iterator_internal & b) {
return (this->ret_ptr - b.ret_ptr) / _offset;
}
inline pointer_type data() const { return ret_ptr; }
inline difference_type offset() const { return _offset; }
protected:
UInt _offset{0};
pointer_type initial{nullptr};
std::unique_ptr<internal_value_type> ret{nullptr};
pointer_type ret_ptr{nullptr};
};
/* -------------------------------------------------------------------------- */
/* Iterators */
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <typename R>
class Array<T, is_scal>::const_iterator
: public iterator_internal<const R, Array<T, is_scal>::const_iterator<R>,
R> {
public:
using parent = iterator_internal<const R, const_iterator, R>;
using value_type = typename parent::value_type;
using pointer = typename parent::pointer;
using reference = typename parent::reference;
using difference_type = typename parent::difference_type;
using iterator_category = typename parent::iterator_category;
public:
~const_iterator() override = default;
const_iterator() = default;
const_iterator(const const_iterator & it) = default;
const_iterator(const_iterator && it) noexcept = default;
const_iterator & operator=(const const_iterator & it) = default;
const_iterator & operator=(const_iterator && it) noexcept = default;
template <typename P,
typename = std::enable_if_t<not aka::is_tensor<P>::value>>
const_iterator(P * data) : parent(data) {}
template <typename UP_P, typename = std::enable_if_t<aka::is_tensor<
typename UP_P::element_type>::value>>
const_iterator(UP_P && tensor) : parent(std::forward<UP_P>(tensor)) {}
};
/* -------------------------------------------------------------------------- */
template <class T, class R, bool is_tensor_ = aka::is_tensor<R>::value>
struct ConstConverterIteratorHelper {
using const_iterator = typename Array<T>::template const_iterator<R>;
using iterator = typename Array<T>::template iterator<R>;
static inline const_iterator convert(const iterator & it) {
return const_iterator(std::unique_ptr<R>(new R(*it, false)));
}
};
template <class T, class R> struct ConstConverterIteratorHelper<T, R, false> {
using const_iterator = typename Array<T>::template const_iterator<R>;
using iterator = typename Array<T>::template iterator<R>;
static inline const_iterator convert(const iterator & it) {
return const_iterator(it.data());
}
};
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <typename R>
class Array<T, is_scal>::iterator
: public iterator_internal<R, Array<T, is_scal>::iterator<R>> {
public:
using parent = iterator_internal<R, iterator>;
using value_type = typename parent::value_type;
using pointer = typename parent::pointer;
using reference = typename parent::reference;
using difference_type = typename parent::difference_type;
using iterator_category = typename parent::iterator_category;
public:
~iterator() override = default;
iterator() = default;
iterator(const iterator & it) = default;
iterator(iterator && it) noexcept = default;
iterator & operator=(const iterator & it) = default;
iterator & operator=(iterator && it) noexcept = default;
template <typename P,
typename = std::enable_if_t<not aka::is_tensor<P>::value>>
iterator(P * data) : parent(data) {}
template <typename UP_P, typename = std::enable_if_t<aka::is_tensor<
typename UP_P::element_type>::value>>
iterator(UP_P && tensor) : parent(std::forward<UP_P>(tensor)) {}
operator const_iterator<R>() {
return ConstConverterIteratorHelper<T, R>::convert(*this);
}
};
/* -------------------------------------------------------------------------- */
/* Begin/End functions implementation */
/* -------------------------------------------------------------------------- */
namespace detail {
template <class Tuple, size_t... Is>
constexpr auto take_front_impl(Tuple && t,
std::index_sequence<Is...> /*idxs*/) {
return std::make_tuple(std::get<Is>(std::forward<Tuple>(t))...);
}
template <size_t N, class Tuple> constexpr auto take_front(Tuple && t) {
return take_front_impl(std::forward<Tuple>(t),
std::make_index_sequence<N>{});
}
template <typename... V> constexpr auto product_all(V &&... v) {
std::common_type_t<int, V...> result = 1;
(void)std::initializer_list<int>{(result *= v, 0)...};
return result;
}
template <typename... T> std::string to_string_all(T &&... t) {
if (sizeof...(T) == 0) {
return "";
}
std::stringstream ss;
bool noComma = true;
ss << "(";
(void)std::initializer_list<bool>{
(ss << (noComma ? "" : ", ") << t, noComma = false)...};
ss << ")";
return ss.str();
}
template <std::size_t N> struct InstantiationHelper {
template <typename type, typename T, typename... Ns>
static auto instantiate(T && data, Ns... ns) {
return std::make_unique<type>(data, ns...);
}
};
template <> struct InstantiationHelper<0> {
template <typename type, typename T> static auto instantiate(T && data) {
return data;
}
};
template <typename Arr, typename T, typename... Ns>
decltype(auto) get_iterator(Arr && array, T * data, Ns &&... ns) {
using type = IteratorHelper_t<sizeof...(Ns) - 1, T>;
using array_type = std::decay_t<Arr>;
using iterator =
std::conditional_t<std::is_const<std::remove_reference_t<Arr>>::value,
typename array_type::template const_iterator<type>,
typename array_type::template iterator<type>>;
static_assert(sizeof...(Ns), "You should provide a least one size");
if (array.getNbComponent() * array.size() !=
product_all(std::forward<Ns>(ns)...)) {
AKANTU_CUSTOM_EXCEPTION_INFO(
debug::ArrayException(),
"The iterator on "
<< debug::demangle(typeid(Arr).name())
<< to_string_all(array.size(), array.getNbComponent())
<< "is not compatible with the type "
<< debug::demangle(typeid(type).name()) << to_string_all(ns...));
}
auto && wrapped = aka::apply(
[&](auto... n) {
return InstantiationHelper<sizeof...(n)>::template instantiate<type>(
data, n...);
},
take_front<sizeof...(Ns) - 1>(std::make_tuple(ns...)));
return iterator(std::move(wrapped));
}
} // namespace detail
/* -------------------------------------------------------------------------- */
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin(Ns &&... ns) {
return detail::get_iterator(*this, this->values, std::forward<Ns>(ns)...,
this->size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end(Ns &&... ns) {
return detail::get_iterator(*this,
this->values + this->nb_component * this->size_,
std::forward<Ns>(ns)..., this->size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin(Ns &&... ns) const {
return detail::get_iterator(*this, this->values, std::forward<Ns>(ns)...,
this->size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end(Ns &&... ns) const {
return detail::get_iterator(*this,
this->values + this->nb_component * this->size_,
std::forward<Ns>(ns)..., this->size_);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin_reinterpret(Ns &&... ns) {
return detail::get_iterator(*this, this->values, std::forward<Ns>(ns)...);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end_reinterpret(Ns &&... ns) {
return detail::get_iterator(
*this, this->values + detail::product_all(std::forward<Ns>(ns)...),
std::forward<Ns>(ns)...);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::begin_reinterpret(Ns &&... ns) const {
return detail::get_iterator(*this, this->values, std::forward<Ns>(ns)...);
}
template <class T, bool is_scal>
template <typename... Ns>
inline decltype(auto) Array<T, is_scal>::end_reinterpret(Ns &&... ns) const {
return detail::get_iterator(
*this, this->values + detail::product_all(std::forward<Ns>(ns)...),
std::forward<Ns>(ns)...);
}
/* -------------------------------------------------------------------------- */
/* Views */
/* -------------------------------------------------------------------------- */
namespace detail {
template <typename Array, typename... Ns> class ArrayView {
using tuple = std::tuple<Ns...>;
public:
~ArrayView() = default;
ArrayView(Array && array, Ns... ns) noexcept
: array(array), sizes(std::move(ns)...) {}
ArrayView(const ArrayView & array_view) = default;
ArrayView & operator=(const ArrayView & array_view) = default;
ArrayView(ArrayView && array_view) noexcept = default;
ArrayView & operator=(ArrayView && array_view) noexcept = default;
decltype(auto) begin() {
return aka::apply(
[&](auto &&... ns) { return array.get().begin_reinterpret(ns...); },
sizes);
}
decltype(auto) begin() const {
return aka::apply(
[&](auto &&... ns) { return array.get().begin_reinterpret(ns...); },
sizes);
}
decltype(auto) end() {
return aka::apply(
[&](auto &&... ns) { return array.get().end_reinterpret(ns...); },
sizes);
}
decltype(auto) end() const {
return aka::apply(
[&](auto &&... ns) { return array.get().end_reinterpret(ns...); },
sizes);
}
decltype(auto) size() const {
return std::get<std::tuple_size<tuple>::value - 1>(sizes);
}
decltype(auto) dims() const { return std::tuple_size<tuple>::value - 1; }
private:
std::reference_wrapper<std::remove_reference_t<Array>> array;
tuple sizes;
};
} // namespace detail
/* -------------------------------------------------------------------------- */
template <typename Array, typename... Ns>
decltype(auto) make_view(Array && array, const Ns... ns) {
static_assert(aka::conjunction<std::is_integral<std::decay_t<Ns>>...>::value,
"Ns should be integral types");
AKANTU_DEBUG_ASSERT((detail::product_all(ns...) != 0),
"You must specify non zero dimensions");
auto size = std::forward<decltype(array)>(array).size() *
std::forward<decltype(array)>(array).getNbComponent() /
detail::product_all(ns...);
return detail::ArrayView<Array, std::common_type_t<size_t, Ns>...,
std::common_type_t<size_t, decltype(size)>>(
std::forward<Array>(array), std::move(ns)..., size);
}
/* --------------------------------------------------------------------------
*/
template <class T, bool is_scal>
template <typename R>
inline typename Array<T, is_scal>::template iterator<R>
Array<T, is_scal>::erase(const iterator<R> & it) {
T * curr = it.data();
UInt pos = (curr - this->values) / this->nb_component;
erase(pos);
iterator<R> rit = it;
return --rit;
}
} // namespace akantu
#endif /* AKANTU_AKA_ARRAY_TMPL_HH_ */
Event Timeline
Log In to Comment