Page MenuHomec4science

material_igfem_elastic.cc
No OneTemporary

File Metadata

Created
Sat, Nov 2, 21:55

material_igfem_elastic.cc

/**
* @file material_igfem_elastic.cc
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
*
*
* @brief Specializaton of material class for the igfem elastic material
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
*/
/* -------------------------------------------------------------------------- */
#include "material_igfem_elastic.hh"
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
template<UInt dim>
MaterialIGFEMElastic<dim>::MaterialIGFEMElastic(SolidMechanicsModel & model, const ID & id) :
Material(model, id),
Parent(model, id),
E(this->nb_sub_materials),
nu(this->nb_sub_materials),
lambda("lambda", *this),
mu("mu", *this),
kpa("kappa", *this) {
AKANTU_DEBUG_IN();
this->initialize();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<UInt dim>
void MaterialIGFEMElastic<dim>::initialize() {
this->registerParam("E" , E , _pat_parsable | _pat_modifiable, "Young's modulus" );
this->registerParam("nu" , nu , _pat_parsable | _pat_modifiable, "Poisson's ratio" );
/// this->registerParam("Plane_Stress", plane_stress, false, _pat_parsmod, "Is plane stress");
this->lambda .initialize(1);
this->mu .initialize(1);
this->kpa .initialize(1);
}
/* -------------------------------------------------------------------------- */
template<UInt dim>
void MaterialIGFEMElastic<dim>::initMaterial() {
AKANTU_DEBUG_IN();
Parent::initMaterial();
if (dim == 1) this->nu.clear(); /// set the Poisson ratios to zero
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<UInt spatial_dimension>
void MaterialIGFEMElastic<spatial_dimension>::updateElasticInternals(GhostType ghost_type) {
SolidMechanicsModelIGFEM * igfem_model = static_cast<SolidMechanicsModelIGFEM*>(this->model);
const Mesh & mesh = this->model->getMesh();
Array<Real> nodes_coordinates(mesh.getNodes(), true);
Array<Real>::const_vector_iterator nodes_it = nodes_coordinates.begin(spatial_dimension);
/// compute the Lamé constants for both sub-materials
Vector<Real> lambda_per_sub_mat(this->nb_sub_materials);
Vector<Real> mu_per_sub_mat(this->nb_sub_materials);
Vector<Real> kpa_per_sub_mat(this->nb_sub_materials);
this->updateElasticConstants(lambda_per_sub_mat, mu_per_sub_mat, kpa_per_sub_mat);
/// loop over all types in the material
typedef ElementTypeMapArray<UInt>:: type_iterator iterator;
iterator it = this->element_filter.firstType(spatial_dimension, ghost_type, _ek_igfem);
iterator last_type = this->element_filter.lastType(spatial_dimension, ghost_type, _ek_igfem);
UInt index_1 = 0;
UInt index_2 = 0;
/// loop over all types in the filter
for(; it != last_type; ++it) {
ElementType el_type = *it;
UInt nb_nodes_per_el = mesh.getNbNodesPerElement(el_type);
UInt nb_parent_nodes = IGFEMHelper::getNbParentNodes(el_type);
Vector<bool> is_inside(nb_parent_nodes);
const Array<UInt> & connectivity = mesh.getConnectivity(el_type, ghost_type);
Array<UInt>::const_vector_iterator connec_it = connectivity.begin(nb_nodes_per_el);
/// get the number of quadrature points for the two sub-elements
UInt quads_1 = IGFEMHelper::getNbQuadraturePoints(el_type, 0);
UInt quads_2 = IGFEMHelper::getNbQuadraturePoints(el_type, 1);
/// get pointer to internals for given type
Real * lambda_ptr = this->lambda(el_type, ghost_type).storage();
Real * mu_ptr = this->mu(el_type, ghost_type).storage();
Real * kpa_ptr = this->kpa(el_type, ghost_type).storage();
/// loop all elements for the given type
const Array<UInt> & filter = this->element_filter(el_type,ghost_type);
UInt nb_elements = filter.getSize();
for (UInt e = 0; e < nb_elements; ++e, ++connec_it) {
for (UInt i = 0; i < nb_parent_nodes; ++i) {
Vector<Real> node = nodes_it[(*connec_it)(i)];
is_inside(i) = igfem_model->isInside(node, this->name_sub_mat_1);
}
UInt orientation = IGFEMHelper::getElementOrientation(el_type, is_inside);
if (orientation) {
index_1 = 0;
index_2 = 1;
}
else {
index_1 = 1;
index_2 = 0;
}
for (UInt q = 0; q < quads_1; ++q, ++lambda_ptr, ++mu_ptr, ++kpa_ptr) {
*lambda_ptr = lambda_per_sub_mat(index_1);
*mu_ptr = mu_per_sub_mat(index_1);
*kpa_ptr = kpa_per_sub_mat(index_1);
}
for (UInt q = 0; q < quads_2; ++q, ++lambda_ptr, ++mu_ptr, ++kpa_ptr) {
*lambda_ptr = lambda_per_sub_mat(index_2);
*mu_ptr = mu_per_sub_mat(index_2);
*kpa_ptr = kpa_per_sub_mat(index_2);
}
}
}
}
/* -------------------------------------------------------------------------- */
template<UInt dim>
void MaterialIGFEMElastic<dim>::updateElasticConstants(Vector<Real> & lambda_vec, Vector<Real> & mu_vec, Vector<Real> & kpa_vec) {
for (UInt i = 0; i < this->nb_sub_materials; ++i) {
lambda_vec(i) = this->nu(i) * this->E(i) / ((1 + this->nu(i)) * (1 - 2*this->nu(i)));
mu_vec(i) = this->E(i) / (2 * (1 + this->nu(i)));
kpa_vec(i) = lambda_vec(i) + 2./3. * mu_vec(i);
}
}
/* -------------------------------------------------------------------------- */
template<>
void MaterialIGFEMElastic<2>::updateElasticConstants(Vector<Real> & lambda_vec, Vector<Real> & mu_vec, Vector<Real> & kpa_vec) {
for (UInt i = 0; i < this->nb_sub_materials; ++i) {
lambda_vec(i) = this->nu(i) * this->E(i) / ((1 + this->nu(1)) * (1 - 2*this->nu(i)));
mu_vec(i) = this->E(i) / (2 * (1 + this->nu(i)));
if(this->plane_stress) lambda_vec(i) = this->nu(i) * this->E(i) / ((1 + this->nu(i))*(1 - this->nu(i)));
kpa_vec(i) = lambda_vec(i) + 2./3. * mu_vec(i);
}
}
/* -------------------------------------------------------------------------- */
template<UInt spatial_dimension>
void MaterialIGFEMElastic<spatial_dimension>::computeStress(ElementType el_type, GhostType ghost_type) {
AKANTU_DEBUG_IN();
Parent::computeStress(el_type, ghost_type);
if (!this->finite_deformation) {
/// get pointer to internals
Real * lambda_ptr = this->lambda(el_type, ghost_type).storage();
Real * mu_ptr = this->mu(el_type, ghost_type).storage();
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type);
this->computeStressOnQuad(grad_u, sigma, *lambda_ptr, *mu_ptr);
++lambda_ptr;
++mu_ptr;
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END;
} else {
AKANTU_DEBUG_TO_IMPLEMENT();
}
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<UInt spatial_dimension>
void MaterialIGFEMElastic<spatial_dimension>::computeTangentModuli(__attribute__((unused)) const ElementType & el_type,
Array<Real> & tangent_matrix,
__attribute__((unused)) GhostType ghost_type) {
AKANTU_DEBUG_IN();
/// get pointer to internals
Real * lambda_ptr = this->lambda(el_type, ghost_type).storage();
Real * mu_ptr = this->mu(el_type, ghost_type).storage();
MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_BEGIN(tangent_matrix);
this->computeTangentModuliOnQuad(tangent, *lambda_ptr, *mu_ptr);
++lambda_ptr;
++mu_ptr;
MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_END;
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<UInt spatial_dimension>
void MaterialIGFEMElastic<spatial_dimension>::computePotentialEnergy(ElementType el_type,
GhostType ghost_type) {
AKANTU_DEBUG_IN();
// MaterialThermal<spatial_dimension>::computePotentialEnergy(el_type, ghost_type);
// if(ghost_type != _not_ghost) return;
// Array<Real>::scalar_iterator epot = this->potential_energy(el_type, ghost_type).begin();
// if (!this->finite_deformation) {
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type);
// this->computePotentialEnergyOnQuad(grad_u, sigma, *epot);
// ++epot;
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END;
// } else {
// Matrix<Real> E(spatial_dimension, spatial_dimension);
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN(el_type, ghost_type);
// this->template gradUToGreenStrain<spatial_dimension>(grad_u, E);
// this->computePotentialEnergyOnQuad(E, sigma, *epot);
// ++epot;
// MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END;
// }
AKANTU_DEBUG_TO_IMPLEMENT();
AKANTU_DEBUG_OUT();
}
/* -------------------------------------------------------------------------- */
template<UInt spatial_dimension>
void MaterialIGFEMElastic<spatial_dimension>::computePotentialEnergyByElement(ElementType type, UInt index,
Vector<Real> & epot_on_quad_points) {
// Array<Real>::matrix_iterator gradu_it =
// this->gradu(type).begin(spatial_dimension,
// spatial_dimension);
// Array<Real>::matrix_iterator gradu_end =
// this->gradu(type).begin(spatial_dimension,
// spatial_dimension);
// Array<Real>::matrix_iterator stress_it =
// this->stress(type).begin(spatial_dimension,
// spatial_dimension);
// if (this->finite_deformation)
// stress_it = this->piola_kirchhoff_2(type).begin(spatial_dimension,
// spatial_dimension);
// UInt nb_quadrature_points = this->model->getFEEngine().getNbQuadraturePoints(type);
// gradu_it += index*nb_quadrature_points;
// gradu_end += (index+1)*nb_quadrature_points;
// stress_it += index*nb_quadrature_points;
// Real * epot_quad = epot_on_quad_points.storage();
// Matrix<Real> grad_u(spatial_dimension, spatial_dimension);
// for(;gradu_it != gradu_end; ++gradu_it, ++stress_it, ++epot_quad) {
// if (this->finite_deformation)
// this->template gradUToGreenStrain<spatial_dimension>(*gradu_it, grad_u);
// else
// grad_u.copy(*gradu_it);
// this->computePotentialEnergyOnQuad(grad_u, *stress_it, *epot_quad);
// }
AKANTU_DEBUG_TO_IMPLEMENT();
}
/* -------------------------------------------------------------------------- */
template<UInt spatial_dimension>
void MaterialIGFEMElastic<spatial_dimension>::onElementsAdded(const Array<Element> & element_list,
const NewElementsEvent & event) {
Parent::onElementsAdded(element_list, event);
updateElasticInternals(_not_ghost);
};
INSTANTIATE_MATERIAL(MaterialIGFEMElastic);
__END_AKANTU__

Event Timeline