Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91044510
material_elastic.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Nov 7, 06:33
Size
8 KB
Mime Type
text/x-c++
Expires
Sat, Nov 9, 06:33 (2 d)
Engine
blob
Format
Raw Data
Handle
22179510
Attached To
rAKA akantu
material_elastic.cc
View Options
/**
* @file material_elastic.cc
*
* @author Lucas Frerot <lucas.frerot@epfl.ch>
* @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Thu Oct 15 2015
*
* @brief Specialization of the material class for the elastic material
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "material_elastic.hh"
#include "solid_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
MaterialElastic
<
dim
>::
MaterialElastic
(
SolidMechanicsModel
&
model
,
const
ID
&
id
)
:
Material
(
model
,
id
),
Parent
(
model
,
id
),
was_stiffness_assembled
(
false
)
{
AKANTU_DEBUG_IN
();
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
MaterialElastic
<
dim
>::
MaterialElastic
(
SolidMechanicsModel
&
model
,
__attribute__
((
unused
))
UInt
a_dim
,
const
Mesh
&
mesh
,
FEEngine
&
fe_engine
,
const
ID
&
id
)
:
Material
(
model
,
dim
,
mesh
,
fe_engine
,
id
),
Parent
(
model
,
dim
,
mesh
,
fe_engine
,
id
),
was_stiffness_assembled
(
false
)
{
AKANTU_DEBUG_IN
();
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
MaterialElastic
<
dim
>::
initialize
()
{
this
->
registerParam
(
"lambda"
,
lambda
,
_pat_readable
,
"First Lamé coefficient"
);
this
->
registerParam
(
"mu"
,
mu
,
_pat_readable
,
"Second Lamé coefficient"
);
this
->
registerParam
(
"kapa"
,
kpa
,
_pat_readable
,
"Bulk coefficient"
);
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
MaterialElastic
<
dim
>::
initMaterial
()
{
AKANTU_DEBUG_IN
();
Parent
::
initMaterial
();
if
(
dim
==
1
)
this
->
nu
=
0.
;
this
->
updateInternalParameters
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
MaterialElastic
<
dim
>::
updateInternalParameters
()
{
MaterialThermal
<
dim
>::
updateInternalParameters
();
this
->
lambda
=
this
->
nu
*
this
->
E
/
((
1
+
this
->
nu
)
*
(
1
-
2
*
this
->
nu
));
this
->
mu
=
this
->
E
/
(
2
*
(
1
+
this
->
nu
));
this
->
kpa
=
this
->
lambda
+
2.
/
3.
*
this
->
mu
;
this
->
was_stiffness_assembled
=
false
;
}
/* -------------------------------------------------------------------------- */
template
<>
void
MaterialElastic
<
2
>::
updateInternalParameters
()
{
MaterialThermal
<
2
>::
updateInternalParameters
();
this
->
lambda
=
this
->
nu
*
this
->
E
/
((
1
+
this
->
nu
)
*
(
1
-
2
*
this
->
nu
));
this
->
mu
=
this
->
E
/
(
2
*
(
1
+
this
->
nu
));
if
(
this
->
plane_stress
)
this
->
lambda
=
this
->
nu
*
this
->
E
/
((
1
+
this
->
nu
)
*
(
1
-
this
->
nu
));
this
->
kpa
=
this
->
lambda
+
2.
/
3.
*
this
->
mu
;
this
->
was_stiffness_assembled
=
false
;
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialElastic
<
spatial_dimension
>::
computeStress
(
ElementType
el_type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
Parent
::
computeStress
(
el_type
,
ghost_type
);
Array
<
Real
>::
const_scalar_iterator
sigma_th_it
=
this
->
sigma_th
(
el_type
,
ghost_type
).
begin
();
if
(
!
this
->
finite_deformation
)
{
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN
(
el_type
,
ghost_type
);
const
Real
&
sigma_th
=
*
sigma_th_it
;
this
->
computeStressOnQuad
(
grad_u
,
sigma
,
sigma_th
);
++
sigma_th_it
;
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END
;
}
else
{
/// finite gradus
Matrix
<
Real
>
E
(
spatial_dimension
,
spatial_dimension
);
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN
(
el_type
,
ghost_type
);
/// compute E
this
->
template
gradUToGreenStrain
<
spatial_dimension
>
(
grad_u
,
E
);
const
Real
&
sigma_th
=
*
sigma_th_it
;
/// compute second Piola-Kirchhoff stress tensor
this
->
computeStressOnQuad
(
E
,
sigma
,
sigma_th
);
++
sigma_th_it
;
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialElastic
<
spatial_dimension
>::
computeTangentModuli
(
__attribute__
((
unused
))
const
ElementType
&
el_type
,
Array
<
Real
>
&
tangent_matrix
,
__attribute__
((
unused
))
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_BEGIN
(
tangent_matrix
);
this
->
computeTangentModuliOnQuad
(
tangent
);
MATERIAL_TANGENT_QUADRATURE_POINT_LOOP_END
;
this
->
was_stiffness_assembled
=
true
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
Real
MaterialElastic
<
spatial_dimension
>::
getPushWaveSpeed
(
__attribute__
((
unused
))
const
Element
&
element
)
const
{
return
sqrt
((
lambda
+
2
*
mu
)
/
this
->
rho
);
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
Real
MaterialElastic
<
spatial_dimension
>::
getShearWaveSpeed
(
__attribute__
((
unused
))
const
Element
&
element
)
const
{
return
sqrt
(
mu
/
this
->
rho
);
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialElastic
<
spatial_dimension
>::
computePotentialEnergy
(
ElementType
el_type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
MaterialThermal
<
spatial_dimension
>::
computePotentialEnergy
(
el_type
,
ghost_type
);
if
(
ghost_type
!=
_not_ghost
)
return
;
Array
<
Real
>::
scalar_iterator
epot
=
this
->
potential_energy
(
el_type
,
ghost_type
).
begin
();
if
(
!
this
->
finite_deformation
)
{
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN
(
el_type
,
ghost_type
);
this
->
computePotentialEnergyOnQuad
(
grad_u
,
sigma
,
*
epot
);
++
epot
;
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END
;
}
else
{
Matrix
<
Real
>
E
(
spatial_dimension
,
spatial_dimension
);
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_BEGIN
(
el_type
,
ghost_type
);
this
->
template
gradUToGreenStrain
<
spatial_dimension
>
(
grad_u
,
E
);
this
->
computePotentialEnergyOnQuad
(
E
,
sigma
,
*
epot
);
++
epot
;
MATERIAL_STRESS_QUADRATURE_POINT_LOOP_END
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
spatial_dimension
>
void
MaterialElastic
<
spatial_dimension
>::
computePotentialEnergyByElement
(
ElementType
type
,
UInt
index
,
Vector
<
Real
>
&
epot_on_quad_points
)
{
Array
<
Real
>::
matrix_iterator
gradu_it
=
this
->
gradu
(
type
).
begin
(
spatial_dimension
,
spatial_dimension
);
Array
<
Real
>::
matrix_iterator
gradu_end
=
this
->
gradu
(
type
).
begin
(
spatial_dimension
,
spatial_dimension
);
Array
<
Real
>::
matrix_iterator
stress_it
=
this
->
stress
(
type
).
begin
(
spatial_dimension
,
spatial_dimension
);
if
(
this
->
finite_deformation
)
stress_it
=
this
->
piola_kirchhoff_2
(
type
)
.
begin
(
spatial_dimension
,
spatial_dimension
);
UInt
nb_quadrature_points
=
this
->
model
->
getFEEngine
().
getNbIntegrationPoints
(
type
);
gradu_it
+=
index
*
nb_quadrature_points
;
gradu_end
+=
(
index
+
1
)
*
nb_quadrature_points
;
stress_it
+=
index
*
nb_quadrature_points
;
Real
*
epot_quad
=
epot_on_quad_points
.
storage
();
Matrix
<
Real
>
grad_u
(
spatial_dimension
,
spatial_dimension
);
for
(;
gradu_it
!=
gradu_end
;
++
gradu_it
,
++
stress_it
,
++
epot_quad
)
{
if
(
this
->
finite_deformation
)
this
->
template
gradUToGreenStrain
<
spatial_dimension
>
(
*
gradu_it
,
grad_u
);
else
grad_u
.
copy
(
*
gradu_it
);
this
->
computePotentialEnergyOnQuad
(
grad_u
,
*
stress_it
,
*
epot_quad
);
}
}
/* -------------------------------------------------------------------------- */
INSTANTIATE_MATERIAL
(
MaterialElastic
);
__END_AKANTU__
Event Timeline
Log In to Comment