Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90792120
structural_mechanics_model.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Nov 4, 19:39
Size
12 KB
Mime Type
text/x-c++
Expires
Wed, Nov 6, 19:39 (2 d)
Engine
blob
Format
Raw Data
Handle
22135528
Attached To
rAKA akantu
structural_mechanics_model.hh
View Options
/**
* @file structural_mechanics_model.hh
*
* @author Fabian Barras <fabian.barras@epfl.ch>
* @author Sébastien Hartmann <sebastien.hartmann@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Damien Spielmann <damien.spielmann@epfl.ch>
*
* @date creation: Fri Jul 15 2011
* @date last modification: Thu Jan 21 2016
*
* @brief Particular implementation of the structural elements in the
* StructuralMechanicsModel
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_STRUCTURAL_MECHANICS_MODEL_HH__
#define __AKANTU_STRUCTURAL_MECHANICS_MODEL_HH__
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "model.hh"
#include "integrator_gauss.hh"
#include "shape_linked.hh"
#include "aka_types.hh"
#include "dumpable.hh"
#include "solver.hh"
#include "integration_scheme_2nd_order.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
class
SparseMatrix
;
}
__BEGIN_AKANTU__
struct
StructuralMaterial
{
Real
E
;
Real
A
;
Real
I
;
Real
Iz
;
Real
Iy
;
Real
GJ
;
Real
rho
;
Real
t
;
Real
nu
;
};
struct
StructuralMechanicsModelOptions
:
public
ModelOptions
{
StructuralMechanicsModelOptions
(
AnalysisMethod
analysis_method
=
_static
)
:
analysis_method
(
analysis_method
)
{}
AnalysisMethod
analysis_method
;
};
extern
const
StructuralMechanicsModelOptions
default_structural_mechanics_model_options
;
class
StructuralMechanicsModel
:
public
Model
{
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public
:
typedef
FEEngineTemplate
<
IntegratorGauss
,
ShapeLinked
,
_ek_structural
>
MyFEEngineType
;
StructuralMechanicsModel
(
Mesh
&
mesh
,
UInt
spatial_dimension
=
_all_dimensions
,
const
ID
&
id
=
"structural_mechanics_model"
,
const
MemoryID
&
memory_id
=
0
);
virtual
~
StructuralMechanicsModel
();
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
public
:
/// initialize fully the model
void
initFull
(
const
ModelOptions
&
options
=
default_structural_mechanics_model_options
);
/// initialize the internal vectors
void
initArrays
();
/// initialize the model
void
initModel
();
/// initialize the solver
void
initSolver
(
SolverOptions
&
options
=
_solver_no_options
);
/// initialize the stuff for the implicit solver
void
initImplicit
(
bool
dynamic
=
false
,
SolverOptions
&
solver_options
=
_solver_no_options
);
/// compute the stresses per elements
void
computeStresses
();
/// assemble the stiffness matrix
void
assembleStiffnessMatrix
();
/// assemble the mass matrix for consistent mass resolutions
void
assembleMass
();
/// implicit time integration predictor
void
implicitPred
();
/// implicit time integration corrector
void
implicitCorr
();
/// update the residual vector
void
updateResidual
();
/// solve the system
void
solve
();
bool
testConvergenceIncrement
(
Real
tolerance
);
bool
testConvergenceIncrement
(
Real
tolerance
,
Real
&
error
);
void
computeRotationMatrix
(
const
ElementType
&
type
);
protected
:
UInt
getTangentStiffnessVoigtSize
(
const
ElementType
&
type
);
/// compute Rotation Matrices
template
<
const
ElementType
type
>
void
computeRotationMatrix
(
__attribute__
((
unused
))
Array
<
Real
>
&
rotations
)
{}
/// compute A and solve @f[ A\delta u = f_ext - f_int @f]
template
<
NewmarkBeta
::
IntegrationSchemeCorrectorType
type
>
void
solve
(
Array
<
Real
>
&
increment
,
__attribute__
((
unused
))
Real
block_val
=
1.
);
/* ------------------------------------------------------------------------ */
/* Mass (structural_mechanics_model_mass.cc) */
/* ------------------------------------------------------------------------ */
/// assemble the mass matrix for either _ghost or _not_ghost elements
void
assembleMass
(
GhostType
ghost_type
);
/// computes rho
void
computeRho
(
Array
<
Real
>
&
rho
,
ElementType
type
,
GhostType
ghost_type
);
/// finish the computation of residual to solve in increment
void
updateResidualInternal
();
/* ------------------------------------------------------------------------ */
private
:
template
<
ElementType
type
>
inline
UInt
getTangentStiffnessVoigtSize
();
template
<
ElementType
type
>
void
assembleStiffnessMatrix
();
template
<
ElementType
type
>
void
assembleMass
();
template
<
ElementType
type
>
void
computeStressOnQuad
();
template
<
ElementType
type
>
void
computeTangentModuli
(
Array
<
Real
>
&
tangent_moduli
);
template
<
ElementType
type
>
void
transferBMatrixToSymVoigtBMatrix
(
Array
<
Real
>
&
B
,
bool
local
=
false
);
template
<
ElementType
type
>
void
transferNMatrixToSymVoigtNMatrix
(
Array
<
Real
>
&
N_matrix
);
/* ------------------------------------------------------------------------ */
/* Dumpable interface */
/* ------------------------------------------------------------------------ */
public
:
virtual
dumper
::
Field
*
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
);
virtual
dumper
::
Field
*
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
);
virtual
dumper
::
Field
*
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
bool
padding_flag
,
const
ElementKind
&
kind
,
const
std
::
string
&
fe_engine_id
=
""
);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public
:
/// set the value of the time step
void
setTimeStep
(
Real
time_step
);
/// return the dimension of the system space
AKANTU_GET_MACRO
(
SpatialDimension
,
spatial_dimension
,
UInt
);
/// get the StructuralMechanicsModel::displacement vector
AKANTU_GET_MACRO
(
Displacement
,
*
displacement_rotation
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::velocity vector
AKANTU_GET_MACRO
(
Velocity
,
*
velocity
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::acceleration vector, updated
/// by
/// StructuralMechanicsModel::updateAcceleration
AKANTU_GET_MACRO
(
Acceleration
,
*
acceleration
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::force vector (boundary forces)
AKANTU_GET_MACRO
(
Force
,
*
force_momentum
,
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::residual vector, computed by
/// StructuralMechanicsModel::updateResidual
AKANTU_GET_MACRO
(
Residual
,
*
residual
,
const
Array
<
Real
>
&
);
/// get the StructuralMechanicsModel::boundary vector
AKANTU_GET_MACRO
(
BlockedDOFs
,
*
blocked_dofs
,
Array
<
bool
>
&
);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
RotationMatrix
,
rotation_matrix
,
Real
);
AKANTU_GET_MACRO
(
StiffnessMatrix
,
*
stiffness_matrix
,
const
SparseMatrix
&
);
AKANTU_GET_MACRO
(
MassMatrix
,
*
mass_matrix
,
const
SparseMatrix
&
);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE_CONST
(
Stress
,
stress
,
Real
);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE
(
ElementMaterial
,
element_material
,
UInt
);
AKANTU_GET_MACRO_BY_ELEMENT_TYPE
(
Set_ID
,
set_ID
,
UInt
);
void
addMaterial
(
StructuralMaterial
&
material
)
{
materials
.
push_back
(
material
);
}
/**
* @brief set the StructuralMechanicsModel::increment_flag to on, the
* activate the
* update of the StructuralMechanicsModel::increment vector
*/
void
setIncrementFlagOn
();
/* ------------------------------------------------------------------------ */
/* Boundaries (structural_mechanics_model_boundary.cc) */
/* ------------------------------------------------------------------------ */
public
:
/// Compute Linear load function set in global axis
template
<
ElementType
type
>
void
computeForcesByGlobalTractionArray
(
const
Array
<
Real
>
&
tractions
);
/// Compute Linear load function set in local axis
template
<
ElementType
type
>
void
computeForcesByLocalTractionArray
(
const
Array
<
Real
>
&
tractions
);
/// compute force vector from a function(x,y,momentum) that describe stresses
template
<
ElementType
type
>
void
computeForcesFromFunction
(
BoundaryFunction
in_function
,
BoundaryFunctionType
function_type
);
/**
* solve a step (predictor + convergence loop + corrector) using the
* the given convergence method (see akantu::SolveConvergenceMethod)
* and the given convergence criteria (see
* akantu::SolveConvergenceCriteria)
**/
template
<
SolveConvergenceMethod
method
,
SolveConvergenceCriteria
criteria
>
bool
solveStep
(
Real
tolerance
,
UInt
max_iteration
=
100
);
template
<
SolveConvergenceMethod
method
,
SolveConvergenceCriteria
criteria
>
bool
solveStep
(
Real
tolerance
,
Real
&
error
,
UInt
max_iteration
=
100
);
/// test if the system is converged
template
<
SolveConvergenceCriteria
criteria
>
bool
testConvergence
(
Real
tolerance
,
Real
&
error
);
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
private
:
/// time step
Real
time_step
;
/// conversion coefficient form force/mass to acceleration
Real
f_m2a
;
/// displacements array
Array
<
Real
>
*
displacement_rotation
;
/// displacements array at the previous time step (used in finite deformation)
Array
<
Real
>
*
previous_displacement
;
/// velocities array
Array
<
Real
>
*
velocity
;
/// accelerations array
Array
<
Real
>
*
acceleration
;
/// forces array
Array
<
Real
>
*
force_momentum
;
/// lumped mass array
Array
<
Real
>
*
mass
;
/// stress arraz
ElementTypeMapArray
<
Real
>
stress
;
/// residuals array
Array
<
Real
>
*
residual
;
/// boundaries array
Array
<
bool
>
*
blocked_dofs
;
/// position of a dof in the K matrix
Array
<
Int
>
*
equation_number
;
ElementTypeMapArray
<
UInt
>
element_material
;
// Define sets of beams
ElementTypeMapArray
<
UInt
>
set_ID
;
/// local equation_number to global
unordered_map
<
UInt
,
UInt
>::
type
local_eq_num_to_global
;
/// stiffness matrix
SparseMatrix
*
stiffness_matrix
;
/// mass matrix
SparseMatrix
*
mass_matrix
;
/// velocity damping matrix
SparseMatrix
*
velocity_damping_matrix
;
/// jacobian matrix
SparseMatrix
*
jacobian_matrix
;
/// increment of displacement
Array
<
Real
>
*
increment
;
/// solver for implicit
Solver
*
solver
;
/// number of degre of freedom
UInt
nb_degree_of_freedom
;
// Rotation matrix
ElementTypeMapArray
<
Real
>
rotation_matrix
;
/// analysis method check the list in akantu::AnalysisMethod
AnalysisMethod
method
;
/// flag defining if the increment must be computed or not
bool
increment_flag
;
/// integration scheme of second order used
IntegrationScheme2ndOrder
*
integrator
;
/* --------------------------------------------------------------------------
*/
std
::
vector
<
StructuralMaterial
>
materials
;
};
/* -------------------------------------------------------------------------- */
/* inline functions */
/* -------------------------------------------------------------------------- */
#include "structural_mechanics_model_inline_impl.cc"
/// standard output stream operator
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
stream
,
const
StructuralMechanicsModel
&
_this
)
{
_this
.
printself
(
stream
);
return
stream
;
}
__END_AKANTU__
#endif
/* __AKANTU_STRUCTURAL_MECHANICS_MODEL_HH__ */
Event Timeline
Log In to Comment