Page MenuHomec4science

test_solid_mechanics_model_pbc_parallel.cc
No OneTemporary

File Metadata

Created
Sun, Jun 30, 11:12

test_solid_mechanics_model_pbc_parallel.cc

/**
* @file test_solid_mechanics_model_pbc_parallel.cc
*
* @author David Simon Kammer <david.kammer@epfl.ch>
*
* @date Fri Apr 13 16:31:38 2012
*
* @brief test if pbc works in parallel if partition is strips
*
* @section LICENSE
*
* Copyright (©) 2010-2011 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include <limits>
#include <fstream>
#include <iostream>
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "mesh.hh"
#include "mesh_io.hh"
#include "mesh_io_msh.hh"
#include "solid_mechanics_model.hh"
#include "material.hh"
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
# include "io_helper.hh"
#endif //AKANTU_USE_IOHELPER
#ifdef AKANTU_USE_IOHELPER
akantu::ElementType type = akantu::_quadrangle_4;
iohelper::ElemType paraview_type = iohelper::QUAD1;
#endif //AKANTU_USE_IOHELPER
#ifdef AKANTU_USE_IOHELPER
static void paraviewInit(iohelper::Dumper & dumper, const akantu::SolidMechanicsModel & model);
static void paraviewDump(iohelper::Dumper & dumper);
#endif
akantu::Array<akantu::Real> proc_rank(0,1);
int main(int argc, char *argv[])
{
akantu::debug::setDebugLevel(akantu::dblWarning);
akantu::initialize(argc, argv);
akantu::StaticCommunicator & comm =
akantu::StaticCommunicator::getStaticCommunicator();
akantu::Int psize = comm->getNbProc();
akantu::Int prank = comm->whoAmI();
akantu::UInt spatial_dimension = 2;
// akantu::UInt max_steps = 1;
akantu::Real time_factor = 0.2;
akantu::Mesh mesh(spatial_dimension);
akantu::MeshPartition * partition = NULL;
if(prank == 0) {
akantu::MeshIOMSH mesh_io;
mesh_io.read("square_structured.msh", mesh);
partition = new akantu::MeshPartitionScotch(mesh, spatial_dimension);
partition->setNbPartition(psize);
// create the partition
akantu::Array<akantu::Int> part_tab(0,1);
mesh.computeBoundingBox();
akantu::Real rank_border = 0.5 * (mesh.getYMax() - mesh.getYMin());
rank_border += 1e-10;
akantu::Mesh::type_iterator it = mesh.firstType(spatial_dimension);
akantu::Mesh::type_iterator end = mesh.lastType(spatial_dimension);
for(; it != end; ++it) {
akantu::ElementType c_type = *it;
akantu::UInt nb_element = mesh.getNbElement(*it);
for (akantu::UInt el=0; el<nb_element; ++el) {
akantu::Real barycenter[spatial_dimension];
mesh.getBarycenter(el,c_type,barycenter);
if (barycenter[1] > rank_border)
part_tab.push_back(0);
else
part_tab.push_back(1);
}
}
partition->fillPartitionInformation(mesh,part_tab.storage());
} else {
mesh.computeBoundingBox();
}
akantu::SolidMechanicsModel * model = new akantu::SolidMechanicsModel(mesh);
model->initParallel(partition);
/// model initialization
model->initArrays();
/// set vectors to 0
model->getForce().clear();
model->getVelocity().clear();
model->getAcceleration().clear();
model->getDisplacement().clear();
model->initExplicit();
model->initModel();
model->readMaterials("material.dat");
model->initMaterials();
if(prank == 0)
std::cout << model->getMaterial(0) << std::endl;
model->setPBC(1,0,0);
model->initPBC();
model->assembleMassLumped();
akantu::UInt nb_element = mesh.getNbElement(type);
akantu::UInt nb_quads = model->getFEEngine().getNbQuadraturePoints(type);
for(akantu::UInt i=0; i<nb_element * nb_quads; ++i)
proc_rank.push_back(prank);
/// boundary conditions
akantu::UInt nb_nodes = model->getFEEngine().getMesh().getNbNodes();
akantu::Real eps = 1e-16;
akantu::Array<akantu::Real> & coords = const_cast<akantu::Array<akantu::Real> & >(model->getFEEngine().getMesh().getNodes());
for (akantu::UInt i = 0; i < nb_nodes; ++i) {
// block top and bottom nodes
if(std::abs(coords(i,1)-mesh.getYMax()) <= eps
|| std::abs(coords(i,1)-mesh.getYMin()) <= eps) {
model->getBlockedDOFs().storage()[spatial_dimension*i + 1] = true;
}
// correct coordinates (gmsh's unprecision)
for (akantu::UInt d=0; d<spatial_dimension; ++d) {
akantu::Real cor = std::floor(10 * coords(i,d) + 0.5) / 10.;
coords(i,d) = cor;
//std::cout << cor << " ";
}
//std::cout << std::endl;
}
//std::cout << std::endl;
model->synchronizeBoundaries();
akantu::Real time_step = model->getStableTimeStep() * time_factor;
if(prank == 0)
std::cout << "Time Step = " << time_step << "s" << std::endl;
model->setTimeStep(time_step);
#ifdef AKANTU_USE_IOHELPER
/// initialize the paraview output
model->updateResidual();
iohelper::DumperParaview dumper;
paraviewInit(dumper, *model);
#endif //AKANTU_USE_IOHELPER
// modify displacements
akantu::Array<akantu::Real> & displacement = model->getDisplacement();
for (akantu::UInt i = 0; i < nb_nodes; ++i) {
displacement(i,1) = std::abs(coords(i,1) - mesh.getYMin()) * 0.0001;
}
model->synchronizeBoundaries();
#ifdef AKANTU_USE_IOHELPER
/// initialize the paraview output
model->updateResidual();
model->synchronizeResidual();
paraviewDump(dumper);
#endif //AKANTU_USE_IOHELPER
// test (traction at top and bottom boundary should be 2.826923077e7)
// therefore the nodal residual should be 2.826923077e6
akantu::Real solution = 2.826923077e6;
akantu::Real adm_error = 1e-3;
for (akantu::UInt i = 0; i < nb_nodes; ++i) {
akantu::Real trac = std::abs(model->getResidual().storage()[spatial_dimension*i + 1]);
if((std::abs(coords(i,1)-mesh.getYMax()) <= eps
|| std::abs(coords(i,1)-mesh.getYMin()) <= eps) &&
std::abs(trac - solution) > adm_error) {
std::cerr << "Boundary residual in y direction is " << trac <<
" but should be " << solution << "!!!" << std::endl;
return EXIT_FAILURE;
}
}
akantu::finalize();
if(prank == 0)
std::cout << "Test successful!" << std::endl;
return EXIT_SUCCESS;
}
/* -------------------------------------------------------------------------- */
/* iohelper::Dumper vars */
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
void paraviewInit(iohelper::Dumper & dumper, const akantu::SolidMechanicsModel & model) {
akantu::StaticCommunicator * comm =
akantu::StaticCommunicator::getStaticCommunicator();
akantu::Int psize = comm->getNbProc();
akantu::Int prank = comm->whoAmI();
akantu::UInt spatial_dimension = model.getSpatialDimension();
akantu::UInt nb_nodes = model.getFEEngine().getMesh().getNbNodes();
akantu::UInt nb_element = model.getFEEngine().getMesh().getNbElement(type);
dumper.SetParallelContext(prank, psize);
dumper.SetPoints(model.getFEEngine().getMesh().getNodes().storage(),
spatial_dimension, nb_nodes, "pbc_parallel");
dumper.SetConnectivity((int *)model.getFEEngine().getMesh().getConnectivity(type).storage(),
paraview_type, nb_element, iohelper::C_MODE);
dumper.AddNodeDataField(model.getDisplacement().storage(),
spatial_dimension, "displacements");
dumper.AddNodeDataField(model.getVelocity().storage(),
spatial_dimension, "velocity");
dumper.AddNodeDataField(model.getAcceleration().storage(),
spatial_dimension, "acceleration");
dumper.AddNodeDataField(model.getResidual().storage(),
spatial_dimension, "force");
dumper.AddNodeDataField(model.getMass().storage(),
spatial_dimension, "mass");
dumper.AddNodeDataField(model.getForce().storage(),
spatial_dimension, "applied_force");
dumper.AddElemDataField(model.getMaterial(0).getStrain(type).storage(),
spatial_dimension*spatial_dimension, "strain");
dumper.AddElemDataField(model.getMaterial(0).getStress(type).storage(),
spatial_dimension*spatial_dimension, "stress");
dumper.AddElemDataField(proc_rank.storage(), 1, "rank");
dumper.SetEmbeddedValue("displacements", 1);
dumper.SetPrefix("paraview/");
dumper.Init();
dumper.Dump();
}
/* -------------------------------------------------------------------------- */
void paraviewDump(iohelper::Dumper & dumper) {
dumper.Dump();
}
#endif

Event Timeline