Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F91328062
heat_transfer_model.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 10, 01:15
Size
27 KB
Mime Type
text/x-c++
Expires
Tue, Nov 12, 01:15 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22238091
Attached To
rAKA akantu
heat_transfer_model.cc
View Options
/**
* @file heat_transfer_model.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author Lucas Frerot <lucas.frerot@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Srinivasa Babu Ramisetti <srinivasa.ramisetti@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Rui Wang <rui.wang@epfl.ch>
*
* @date creation: Sun May 01 2011
* @date last modification: Mon Nov 30 2015
*
* @brief Implementation of HeatTransferModel class
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "heat_transfer_model.hh"
#include "dumpable_inline_impl.hh"
#include "element_synchronizer.hh"
#include "fe_engine_template.hh"
#include "generalized_trapezoidal.hh"
#include "group_manager_inline_impl.cc"
#include "mesh.hh"
#include "parser.hh"
#ifdef AKANTU_USE_IOHELPER
#include "dumper_element_partition.hh"
#include "dumper_elemental_field.hh"
#include "dumper_internal_material_field.hh"
#include "dumper_paraview.hh"
#endif
/* -------------------------------------------------------------------------- */
namespace
akantu
{
class
ComputeRhoFunctor
{
public
:
ComputeRhoFunctor
(
const
HeatTransferModel
&
model
)
:
model
(
model
){};
void
operator
()(
Matrix
<
Real
>
&
rho
,
const
Element
&
)
const
{
rho
.
set
(
model
.
getCapacity
());
}
private
:
const
HeatTransferModel
&
model
;
};
/* -------------------------------------------------------------------------- */
HeatTransferModel
::
HeatTransferModel
(
Mesh
&
mesh
,
UInt
dim
,
const
ID
&
id
,
const
MemoryID
&
memory_id
)
:
Model
(
mesh
,
ModelType
::
_heat_transfer_model
,
dim
,
id
,
memory_id
),
integrator
(
nullptr
),
temperature_gradient
(
"temperature_gradient"
,
id
),
temperature_on_qpoints
(
"temperature_on_qpoints"
,
id
),
conductivity_on_qpoints
(
"conductivity_on_qpoints"
,
id
),
k_gradt_on_qpoints
(
"k_gradt_on_qpoints"
,
id
),
conductivity
(
dim
,
dim
)
{
AKANTU_DEBUG_IN
();
this
->
initDOFManager
();
this
->
registerDataAccessor
(
*
this
);
if
(
this
->
mesh
.
isDistributed
())
{
auto
&
synchronizer
=
this
->
mesh
.
getElementSynchronizer
();
this
->
registerSynchronizer
(
synchronizer
,
_gst_htm_capacity
);
this
->
registerSynchronizer
(
synchronizer
,
_gst_htm_temperature
);
this
->
registerSynchronizer
(
synchronizer
,
_gst_htm_gradient_temperature
);
}
std
::
stringstream
sstr
;
sstr
<<
id
<<
":fem"
;
registerFEEngineObject
<
MyFEEngineType
>
(
sstr
.
str
(),
mesh
,
spatial_dimension
);
this
->
temperature
=
nullptr
;
this
->
internal_heat_rate
=
nullptr
;
this
->
blocked_dofs
=
nullptr
;
#ifdef AKANTU_USE_IOHELPER
this
->
mesh
.
registerDumper
<
DumperParaview
>
(
"paraview_all"
,
id
,
true
);
this
->
mesh
.
addDumpMesh
(
mesh
,
spatial_dimension
,
_not_ghost
,
_ek_regular
);
#endif
this
->
registerParam
(
"conductivity"
,
conductivity
,
_pat_parsmod
);
this
->
registerParam
(
"conductivity_variation"
,
conductivity_variation
,
0.
,
_pat_parsmod
);
this
->
registerParam
(
"temperature_reference"
,
T_ref
,
0.
,
_pat_parsmod
);
this
->
registerParam
(
"capacity"
,
capacity
,
_pat_parsmod
);
// this->registerParam("density", density, _pat_parsmod);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
initModel
()
{
getFEEngine
().
initShapeFunctions
(
_not_ghost
);
getFEEngine
().
initShapeFunctions
(
_ghost
);
}
/* -------------------------------------------------------------------------- */
FEEngine
&
HeatTransferModel
::
getFEEngineBoundary
(
const
ID
&
name
)
{
return
dynamic_cast
<
FEEngine
&>
(
getFEEngineClassBoundary
<
MyFEEngineType
>
(
name
));
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
HeatTransferModel
::
allocNodalField
(
Array
<
T
>
*&
array
,
const
ID
&
name
)
{
if
(
array
==
nullptr
)
{
UInt
nb_nodes
=
mesh
.
getNbNodes
();
std
::
stringstream
sstr_disp
;
sstr_disp
<<
id
<<
":"
<<
name
;
array
=
&
(
alloc
<
T
>
(
sstr_disp
.
str
(),
nb_nodes
,
1
,
T
()));
}
}
/* -------------------------------------------------------------------------- */
HeatTransferModel
::~
HeatTransferModel
()
=
default
;
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleCapacityLumped
(
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
auto
&
fem
=
getFEEngineClass
<
MyFEEngineType
>
();
ComputeRhoFunctor
compute_rho
(
*
this
);
for
(
auto
&
type
:
mesh
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
fem
.
assembleFieldLumped
(
compute_rho
,
"M"
,
"temperature"
,
this
->
getDOFManager
(),
type
,
ghost_type
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
MatrixType
HeatTransferModel
::
getMatrixType
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
or
matrix_id
==
"M"
)
{
return
_symmetric
;
}
return
_mt_not_defined
;
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"K"
)
{
this
->
assembleConductivityMatrix
();
}
else
if
(
matrix_id
==
"M"
)
{
this
->
assembleCapacity
();
}
else
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleLumpedMatrix
(
const
ID
&
matrix_id
)
{
if
(
matrix_id
==
"M"
)
{
this
->
assembleCapacityLumped
();
}
else
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleCapacityLumped
()
{
AKANTU_DEBUG_IN
();
if
(
!
this
->
getDOFManager
().
hasLumpedMatrix
(
"M"
))
{
this
->
getDOFManager
().
getNewLumpedMatrix
(
"M"
);
}
this
->
getDOFManager
().
clearLumpedMatrix
(
"M"
);
assembleCapacityLumped
(
_not_ghost
);
assembleCapacityLumped
(
_ghost
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleResidual
()
{
AKANTU_DEBUG_IN
();
this
->
assembleInternalHeatRate
();
this
->
getDOFManager
().
assembleToResidual
(
"temperature"
,
*
this
->
external_heat_rate
,
1
);
this
->
getDOFManager
().
assembleToResidual
(
"temperature"
,
*
this
->
internal_heat_rate
,
1
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
initSolver
(
TimeStepSolverType
time_step_solver_type
,
NonLinearSolverType
)
{
DOFManager
&
dof_manager
=
this
->
getDOFManager
();
this
->
allocNodalField
(
this
->
temperature
,
"temperature"
);
this
->
allocNodalField
(
this
->
external_heat_rate
,
"external_heat_rate"
);
this
->
allocNodalField
(
this
->
internal_heat_rate
,
"internal_heat_rate"
);
this
->
allocNodalField
(
this
->
blocked_dofs
,
"blocked_dofs"
);
if
(
!
dof_manager
.
hasDOFs
(
"temperature"
))
{
dof_manager
.
registerDOFs
(
"temperature"
,
*
this
->
temperature
,
_dst_nodal
);
dof_manager
.
registerBlockedDOFs
(
"temperature"
,
*
this
->
blocked_dofs
);
}
if
(
time_step_solver_type
==
_tsst_dynamic
||
time_step_solver_type
==
_tsst_dynamic_lumped
)
{
this
->
allocNodalField
(
this
->
temperature_rate
,
"temperature_rate"
);
if
(
!
dof_manager
.
hasDOFsDerivatives
(
"temperature"
,
1
))
{
dof_manager
.
registerDOFsDerivative
(
"temperature"
,
1
,
*
this
->
temperature_rate
);
}
}
/* ------------------------------------------------------------------------ */
// byelementtype vectors
temperature_on_qpoints
.
initialize
(
this
->
getFEEngine
(),
_nb_component
=
1
);
temperature_gradient
.
initialize
(
this
->
getFEEngine
(),
_nb_component
=
spatial_dimension
);
conductivity_on_qpoints
.
initialize
(
this
->
getFEEngine
(),
_nb_component
=
spatial_dimension
*
spatial_dimension
);
k_gradt_on_qpoints
.
initialize
(
this
->
getFEEngine
(),
_nb_component
=
spatial_dimension
);
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
ID
,
TimeStepSolverType
>
HeatTransferModel
::
getDefaultSolverID
(
const
AnalysisMethod
&
method
)
{
switch
(
method
)
{
case
_explicit_lumped_mass:
{
return
std
::
make_tuple
(
"explicit_lumped"
,
_tsst_dynamic_lumped
);
}
case
_static:
{
return
std
::
make_tuple
(
"static"
,
_tsst_static
);
}
case
_implicit_dynamic:
{
return
std
::
make_tuple
(
"implicit"
,
_tsst_dynamic
);
}
default
:
return
std
::
make_tuple
(
"unknown"
,
_tsst_not_defined
);
}
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleConductivityMatrix
(
bool
compute_conductivity
)
{
AKANTU_DEBUG_IN
();
if
(
!
this
->
getDOFManager
().
hasLumpedMatrix
(
"K"
))
{
this
->
getDOFManager
().
getNewLumpedMatrix
(
"K"
);
}
this
->
getDOFManager
().
clearLumpedMatrix
(
"K"
);
switch
(
mesh
.
getSpatialDimension
())
{
case
1
:
this
->
assembleConductivityMatrix
<
1
>
(
_not_ghost
,
compute_conductivity
);
break
;
case
2
:
this
->
assembleConductivityMatrix
<
2
>
(
_not_ghost
,
compute_conductivity
);
break
;
case
3
:
this
->
assembleConductivityMatrix
<
3
>
(
_not_ghost
,
compute_conductivity
);
break
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
HeatTransferModel
::
assembleConductivityMatrix
(
const
GhostType
&
ghost_type
,
bool
compute_conductivity
)
{
AKANTU_DEBUG_IN
();
Mesh
&
mesh
=
this
->
getFEEngine
().
getMesh
();
Mesh
::
type_iterator
it
=
mesh
.
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
mesh
.
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
{
this
->
assembleConductivityMatrix
<
dim
>
(
*
it
,
ghost_type
,
compute_conductivity
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
HeatTransferModel
::
assembleConductivityMatrix
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
,
bool
compute_conductivity
)
{
AKANTU_DEBUG_IN
();
const
Array
<
Real
>
&
shapes_derivatives
=
this
->
getFEEngine
().
getShapesDerivatives
(
type
,
ghost_type
);
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
nb_quadrature_points
=
getFEEngine
().
getNbIntegrationPoints
(
type
,
ghost_type
);
/// compute @f$\mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
UInt
bt_d_b_size
=
nb_nodes_per_element
;
Array
<
Real
>
*
bt_d_b
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
bt_d_b_size
*
bt_d_b_size
,
"B^t*D*B"
);
Matrix
<
Real
>
Bt_D
(
nb_nodes_per_element
,
dim
);
auto
shapes_derivatives_it
=
shapes_derivatives
.
begin
(
dim
,
nb_nodes_per_element
);
auto
Bt_D_B_it
=
bt_d_b
->
begin
(
bt_d_b_size
,
bt_d_b_size
);
if
(
compute_conductivity
)
this
->
computeConductivityOnQuadPoints
(
ghost_type
);
auto
D_it
=
conductivity_on_qpoints
(
type
,
ghost_type
).
begin
(
dim
,
dim
);
auto
D_end
=
conductivity_on_qpoints
(
type
,
ghost_type
).
end
(
dim
,
dim
);
for
(;
D_it
!=
D_end
;
++
D_it
,
++
Bt_D_B_it
,
++
shapes_derivatives_it
)
{
auto
&
D
=
*
D_it
;
const
auto
&
B
=
*
shapes_derivatives_it
;
auto
&
Bt_D_B
=
*
Bt_D_B_it
;
Bt_D
.
mul
<
true
,
false
>
(
B
,
D
);
Bt_D_B
.
mul
<
false
,
false
>
(
Bt_D
,
B
);
}
/// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
auto
K_e
=
std
::
make_unique
<
Array
<
Real
>>
(
nb_element
,
bt_d_b_size
*
bt_d_b_size
,
"K_e"
);
this
->
getFEEngine
().
integrate
(
*
bt_d_b
,
*
K_e
,
bt_d_b_size
*
bt_d_b_size
,
type
,
ghost_type
);
delete
bt_d_b
;
this
->
getDOFManager
().
assembleElementalMatricesToMatrix
(
"K"
,
"temperature"
,
*
K_e
,
type
,
ghost_type
,
_symmetric
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
computeConductivityOnQuadPoints
(
const
GhostType
&
ghost_type
)
{
for
(
auto
&
type
:
mesh
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
Array
<
Real
>
&
temperature_interpolated
=
temperature_on_qpoints
(
type
,
ghost_type
);
// compute the temperature on quadrature points
this
->
getFEEngine
().
interpolateOnIntegrationPoints
(
*
temperature
,
temperature_interpolated
,
1
,
type
,
ghost_type
);
auto
C_it
=
conductivity_on_qpoints
(
type
,
ghost_type
)
.
begin
(
spatial_dimension
,
spatial_dimension
);
auto
C_end
=
conductivity_on_qpoints
(
type
,
ghost_type
)
.
end
(
spatial_dimension
,
spatial_dimension
);
auto
T_it
=
temperature_interpolated
.
begin
();
for
(;
C_it
!=
C_end
;
++
C_it
,
++
T_it
)
{
Matrix
<
Real
>
&
C
=
*
C_it
;
Real
&
T
=
*
T_it
;
C
=
conductivity
;
Matrix
<
Real
>
variation
(
spatial_dimension
,
spatial_dimension
,
conductivity_variation
*
(
T
-
T_ref
));
C
+=
conductivity_variation
;
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
computeKgradT
(
const
GhostType
&
ghost_type
)
{
if
(
this
->
compute_conductivity
)
computeConductivityOnQuadPoints
(
ghost_type
);
for
(
auto
&
type
:
mesh
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
Array
<
Real
>
&
gradient
=
temperature_gradient
(
type
,
ghost_type
);
this
->
getFEEngine
().
gradientOnIntegrationPoints
(
*
temperature
,
gradient
,
1
,
type
,
ghost_type
);
Array
<
Real
>::
matrix_iterator
C_it
=
conductivity_on_qpoints
(
type
,
ghost_type
)
.
begin
(
spatial_dimension
,
spatial_dimension
);
Array
<
Real
>::
vector_iterator
BT_it
=
gradient
.
begin
(
spatial_dimension
);
Array
<
Real
>::
vector_iterator
k_BT_it
=
k_gradt_on_qpoints
(
type
,
ghost_type
).
begin
(
spatial_dimension
);
Array
<
Real
>::
vector_iterator
k_BT_end
=
k_gradt_on_qpoints
(
type
,
ghost_type
).
end
(
spatial_dimension
);
for
(;
k_BT_it
!=
k_BT_end
;
++
k_BT_it
,
++
BT_it
,
++
C_it
)
{
Vector
<
Real
>
&
k_BT
=
*
k_BT_it
;
Vector
<
Real
>
&
BT
=
*
BT_it
;
Matrix
<
Real
>
&
C
=
*
C_it
;
k_BT
.
mul
<
false
>
(
C
,
BT
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleInternalHeatRate
()
{
AKANTU_DEBUG_IN
();
this
->
synchronize
(
_gst_htm_temperature
);
for
(
auto
ghost_type
:
ghost_types
)
{
for
(
auto
type
:
mesh
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
Array
<
Real
>
&
shapes_derivatives
=
const_cast
<
Array
<
Real
>
&>
(
getFEEngine
().
getShapesDerivatives
(
type
,
ghost_type
));
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
// compute k \grad T
computeKgradT
(
ghost_type
);
auto
&
k_gradt_on_qpoints_vect
=
k_gradt_on_qpoints
(
type
,
ghost_type
);
auto
k_BT_it
=
k_gradt_on_qpoints_vect
.
begin
(
spatial_dimension
);
auto
B_it
=
shapes_derivatives
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
UInt
nb_quad_points
=
k_gradt_on_qpoints_vect
.
size
();
Array
<
Real
>
bt_k_gT
(
nb_quad_points
,
nb_nodes_per_element
);
auto
Bt_k_BT_it
=
bt_k_gT
.
begin
(
nb_nodes_per_element
);
auto
Bt_k_BT_end
=
bt_k_gT
.
end
(
nb_nodes_per_element
);
for
(;
Bt_k_BT_it
!=
Bt_k_BT_end
;
++
Bt_k_BT_it
,
++
B_it
,
++
k_BT_it
)
{
Vector
<
Real
>
&
k_BT
=
*
k_BT_it
;
Vector
<
Real
>
&
Bt_k_BT
=
*
Bt_k_BT_it
;
Matrix
<
Real
>
&
B
=
*
B_it
;
Bt_k_BT
.
mul
<
true
>
(
B
,
k_BT
);
}
UInt
nb_elements
=
mesh
.
getNbElement
(
type
,
ghost_type
);
Array
<
Real
>
int_bt_k_gT
(
nb_elements
,
nb_nodes_per_element
);
this
->
getFEEngine
().
integrate
(
bt_k_gT
,
int_bt_k_gT
,
nb_nodes_per_element
,
type
,
ghost_type
);
this
->
getDOFManager
().
assembleElementalArrayLocalArray
(
int_bt_k_gT
,
*
this
->
internal_heat_rate
,
type
,
ghost_type
,
-
1
);
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Real
HeatTransferModel
::
getStableTimeStep
()
{
AKANTU_DEBUG_IN
();
Real
el_size
;
Real
min_el_size
=
std
::
numeric_limits
<
Real
>::
max
();
Real
conductivitymax
=
conductivity
(
0
,
0
);
// get the biggest parameter from k11 until k33//
for
(
UInt
i
=
0
;
i
<
spatial_dimension
;
i
++
)
for
(
UInt
j
=
0
;
j
<
spatial_dimension
;
j
++
)
conductivitymax
=
std
::
max
(
conductivity
(
i
,
j
),
conductivitymax
);
for
(
auto
&
type
:
mesh
.
elementTypes
(
spatial_dimension
,
_not_ghost
))
{
UInt
nb_nodes_per_element
=
getFEEngine
().
getMesh
().
getNbNodesPerElement
(
type
);
Array
<
Real
>
coord
(
0
,
nb_nodes_per_element
*
spatial_dimension
);
FEEngine
::
extractNodalToElementField
(
getFEEngine
().
getMesh
(),
getFEEngine
().
getMesh
().
getNodes
(),
coord
,
type
,
_not_ghost
);
auto
el_coord
=
coord
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
UInt
nb_element
=
getFEEngine
().
getMesh
().
getNbElement
(
type
);
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
el_coord
)
{
el_size
=
getFEEngine
().
getElementInradius
(
*
el_coord
,
type
);
min_el_size
=
std
::
min
(
min_el_size
,
el_size
);
}
AKANTU_DEBUG_INFO
(
"The minimum element size : "
<<
min_el_size
<<
" and the max conductivity is : "
<<
conductivitymax
);
}
Real
min_dt
=
2
*
min_el_size
*
min_el_size
*
density
*
capacity
/
conductivitymax
;
mesh
.
getCommunicator
().
allReduce
(
min_dt
,
SynchronizerOperation
::
_min
);
AKANTU_DEBUG_OUT
();
return
min_dt
;
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
readMaterials
()
{
auto
sect
=
this
->
getParserSection
();
if
(
std
::
get
<
1
>
(
sect
))
{
const
auto
&
section
=
std
::
get
<
0
>
(
sect
);
this
->
parseSection
(
section
);
}
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
initFullImpl
(
const
ModelOptions
&
options
)
{
Model
::
initFullImpl
(
options
);
readMaterials
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
assembleCapacity
()
{
AKANTU_DEBUG_IN
();
auto
ghost_type
=
_not_ghost
;
auto
&
fem
=
getFEEngineClass
<
MyFEEngineType
>
();
ComputeRhoFunctor
rho_functor
(
*
this
);
for
(
auto
&&
type
:
mesh
.
elementTypes
(
spatial_dimension
,
ghost_type
))
{
fem
.
assembleFieldMatrix
(
rho_functor
,
"M"
,
"temperature"
,
this
->
getDOFManager
(),
type
,
ghost_type
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
HeatTransferModel
::
computeRho
(
Array
<
Real
>
&
rho
,
ElementType
type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
FEEngine
&
fem
=
this
->
getFEEngine
();
UInt
nb_element
=
fem
.
getMesh
().
getNbElement
(
type
,
ghost_type
);
UInt
nb_quadrature_points
=
fem
.
getNbIntegrationPoints
(
type
,
ghost_type
);
rho
.
resize
(
nb_element
*
nb_quadrature_points
);
Real
*
rho_1_val
=
rho
.
storage
();
/// compute @f$ rho @f$ for each nodes of each element
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
)
{
for
(
UInt
n
=
0
;
n
<
nb_quadrature_points
;
++
n
)
{
*
rho_1_val
++
=
this
->
capacity
;
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Real
HeatTransferModel
::
computeThermalEnergyByNode
()
{
AKANTU_DEBUG_IN
();
Real
ethermal
=
0.
;
for
(
auto
&&
pair
:
enumerate
(
make_view
(
*
internal_heat_rate
,
internal_heat_rate
->
getNbComponent
())))
{
auto
n
=
std
::
get
<
0
>
(
pair
);
auto
&
heat_rate
=
std
::
get
<
1
>
(
pair
);
Real
heat
=
0.
;
bool
is_local_node
=
mesh
.
isLocalOrMasterNode
(
n
);
bool
is_not_pbc_slave_node
=
!
isPBCSlaveNode
(
n
);
bool
count_node
=
is_local_node
&&
is_not_pbc_slave_node
;
for
(
UInt
i
=
0
;
i
<
heat_rate
.
size
();
++
i
)
{
if
(
count_node
)
heat
+=
heat_rate
[
i
]
*
time_step
;
}
ethermal
+=
heat
;
}
mesh
.
getCommunicator
().
allReduce
(
ethermal
,
SynchronizerOperation
::
_sum
);
AKANTU_DEBUG_OUT
();
return
ethermal
;
}
/* -------------------------------------------------------------------------- */
template
<
class
iterator
>
void
HeatTransferModel
::
getThermalEnergy
(
iterator
Eth
,
Array
<
Real
>::
const_iterator
<
Real
>
T_it
,
Array
<
Real
>::
const_iterator
<
Real
>
T_end
)
const
{
for
(;
T_it
!=
T_end
;
++
T_it
,
++
Eth
)
{
*
Eth
=
capacity
*
density
*
*
T_it
;
}
}
/* -------------------------------------------------------------------------- */
Real
HeatTransferModel
::
getThermalEnergy
(
const
ElementType
&
type
,
UInt
index
)
{
AKANTU_DEBUG_IN
();
UInt
nb_quadrature_points
=
getFEEngine
().
getNbIntegrationPoints
(
type
);
Vector
<
Real
>
Eth_on_quarature_points
(
nb_quadrature_points
);
auto
T_it
=
this
->
temperature_on_qpoints
(
type
).
begin
();
T_it
+=
index
*
nb_quadrature_points
;
auto
T_end
=
T_it
+
nb_quadrature_points
;
getThermalEnergy
(
Eth_on_quarature_points
.
storage
(),
T_it
,
T_end
);
return
getFEEngine
().
integrate
(
Eth_on_quarature_points
,
type
,
index
);
}
/* -------------------------------------------------------------------------- */
Real
HeatTransferModel
::
getThermalEnergy
()
{
Real
Eth
=
0
;
Mesh
&
mesh
=
getFEEngine
().
getMesh
();
Mesh
::
type_iterator
it
=
mesh
.
firstType
(
spatial_dimension
);
Mesh
::
type_iterator
last_type
=
mesh
.
lastType
(
spatial_dimension
);
for
(;
it
!=
last_type
;
++
it
)
{
UInt
nb_element
=
getFEEngine
().
getMesh
().
getNbElement
(
*
it
,
_not_ghost
);
UInt
nb_quadrature_points
=
getFEEngine
().
getNbIntegrationPoints
(
*
it
,
_not_ghost
);
Array
<
Real
>
Eth_per_quad
(
nb_element
*
nb_quadrature_points
,
1
);
auto
T_it
=
this
->
temperature_on_qpoints
(
*
it
).
begin
();
auto
T_end
=
this
->
temperature_on_qpoints
(
*
it
).
end
();
getThermalEnergy
(
Eth_per_quad
.
begin
(),
T_it
,
T_end
);
Eth
+=
getFEEngine
().
integrate
(
Eth_per_quad
,
*
it
);
}
return
Eth
;
}
/* -------------------------------------------------------------------------- */
Real
HeatTransferModel
::
getEnergy
(
const
std
::
string
&
id
)
{
AKANTU_DEBUG_IN
();
Real
energy
=
0
;
if
(
id
==
"thermal"
)
energy
=
getThermalEnergy
();
// reduction sum over all processors
mesh
.
getCommunicator
().
allReduce
(
energy
,
SynchronizerOperation
::
_sum
);
AKANTU_DEBUG_OUT
();
return
energy
;
}
/* -------------------------------------------------------------------------- */
Real
HeatTransferModel
::
getEnergy
(
const
std
::
string
&
id
,
const
ElementType
&
type
,
UInt
index
)
{
AKANTU_DEBUG_IN
();
Real
energy
=
0.
;
if
(
id
==
"thermal"
)
energy
=
getThermalEnergy
(
type
,
index
);
AKANTU_DEBUG_OUT
();
return
energy
;
}
/* -------------------------------------------------------------------------- */
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
dumper
::
Field
*
HeatTransferModel
::
createNodalFieldBool
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
__attribute__
((
unused
))
bool
padding_flag
)
{
std
::
map
<
std
::
string
,
Array
<
bool
>
*>
uint_nodal_fields
;
uint_nodal_fields
[
"blocked_dofs"
]
=
blocked_dofs
;
dumper
::
Field
*
field
=
nullptr
;
field
=
mesh
.
createNodalField
(
uint_nodal_fields
[
field_name
],
group_name
);
return
field
;
}
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
HeatTransferModel
::
createNodalFieldReal
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
__attribute__
((
unused
))
bool
padding_flag
)
{
std
::
map
<
std
::
string
,
Array
<
Real
>
*>
real_nodal_fields
;
real_nodal_fields
[
"temperature"
]
=
temperature
;
real_nodal_fields
[
"temperature_rate"
]
=
temperature_rate
;
real_nodal_fields
[
"external_heat_rate"
]
=
external_heat_rate
;
real_nodal_fields
[
"internal_heat_rate"
]
=
internal_heat_rate
;
real_nodal_fields
[
"capacity_lumped"
]
=
capacity_lumped
;
real_nodal_fields
[
"increment"
]
=
increment
;
dumper
::
Field
*
field
=
mesh
.
createNodalField
(
real_nodal_fields
[
field_name
],
group_name
);
return
field
;
}
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
HeatTransferModel
::
createElementalField
(
const
std
::
string
&
field_name
,
const
std
::
string
&
group_name
,
__attribute__
((
unused
))
bool
padding_flag
,
__attribute__
((
unused
))
const
UInt
&
spatial_dimension
,
const
ElementKind
&
element_kind
)
{
dumper
::
Field
*
field
=
nullptr
;
if
(
field_name
==
"partitions"
)
field
=
mesh
.
createElementalField
<
UInt
,
dumper
::
ElementPartitionField
>
(
mesh
.
getConnectivities
(),
group_name
,
this
->
spatial_dimension
,
element_kind
);
else
if
(
field_name
==
"temperature_gradient"
)
{
ElementTypeMap
<
UInt
>
nb_data_per_elem
=
this
->
mesh
.
getNbDataPerElem
(
temperature_gradient
,
element_kind
);
field
=
mesh
.
createElementalField
<
Real
,
dumper
::
InternalMaterialField
>
(
temperature_gradient
,
group_name
,
this
->
spatial_dimension
,
element_kind
,
nb_data_per_elem
);
}
else
if
(
field_name
==
"conductivity"
)
{
ElementTypeMap
<
UInt
>
nb_data_per_elem
=
this
->
mesh
.
getNbDataPerElem
(
conductivity_on_qpoints
,
element_kind
);
field
=
mesh
.
createElementalField
<
Real
,
dumper
::
InternalMaterialField
>
(
conductivity_on_qpoints
,
group_name
,
this
->
spatial_dimension
,
element_kind
,
nb_data_per_elem
);
}
return
field
;
}
/* -------------------------------------------------------------------------- */
#else
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
HeatTransferModel
::
createElementalField
(
__attribute__
((
unused
))
const
std
::
string
&
field_name
,
__attribute__
((
unused
))
const
std
::
string
&
group_name
,
__attribute__
((
unused
))
bool
padding_flag
,
__attribute__
((
unused
))
const
ElementKind
&
element_kind
)
{
return
nullptr
;
}
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
HeatTransferModel
::
createNodalFieldBool
(
__attribute__
((
unused
))
const
std
::
string
&
field_name
,
__attribute__
((
unused
))
const
std
::
string
&
group_name
,
__attribute__
((
unused
))
bool
padding_flag
)
{
return
nullptr
;
}
/* -------------------------------------------------------------------------- */
dumper
::
Field
*
HeatTransferModel
::
createNodalFieldReal
(
__attribute__
((
unused
))
const
std
::
string
&
field_name
,
__attribute__
((
unused
))
const
std
::
string
&
group_name
,
__attribute__
((
unused
))
bool
padding_flag
)
{
return
nullptr
;
}
#endif
}
// akantu
Event Timeline
Log In to Comment