Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90910270
mesh.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 21:48
Size
22 KB
Mime Type
text/x-c++
Expires
Thu, Nov 7, 21:48 (2 d)
Engine
blob
Format
Raw Data
Handle
22157160
Attached To
rAKA akantu
mesh.cc
View Options
/**
* @file mesh.cc
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Tue Feb 20 2018
*
* @brief class handling meshes
*
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_config.hh"
/* -------------------------------------------------------------------------- */
#include "element_class.hh"
#include "group_manager_inline_impl.hh"
#include "mesh.hh"
#include "mesh_global_data_updater.hh"
#include "mesh_io.hh"
#include "mesh_iterators.hh"
#include "mesh_utils.hh"
/* -------------------------------------------------------------------------- */
#include "communicator.hh"
#include "element_synchronizer.hh"
#include "facet_synchronizer.hh"
#include "mesh_utils_distribution.hh"
#include "node_synchronizer.hh"
#include "periodic_node_synchronizer.hh"
/* -------------------------------------------------------------------------- */
#include <algorithm>
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
#include "dumper_field.hh"
#include "dumper_internal_material_field.hh"
#endif
/* -------------------------------------------------------------------------- */
#include <limits>
#include <sstream>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
const
ID
&
id
,
Communicator
&
communicator
)
:
EventHandlerManager
<
MeshEventHandler
,
Mesh
>
(
*
this
),
GroupManager
(
*
this
,
id
+
":group_manager"
),
MeshData
(
"mesh_data"
,
id
),
id
(
id
),
connectivities
(
"connectivities"
,
id
),
ghosts_counters
(
"ghosts_counters"
,
id
),
normals
(
"normals"
,
id
),
spatial_dimension
(
spatial_dimension
),
size
(
spatial_dimension
,
0.
),
bbox
(
spatial_dimension
),
bbox_local
(
spatial_dimension
),
communicator
(
&
communicator
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
Communicator
&
communicator
,
const
ID
&
id
)
:
Mesh
(
spatial_dimension
,
id
,
communicator
)
{
AKANTU_DEBUG_IN
();
this
->
nodes
=
std
::
make_shared
<
Array
<
Real
>>
(
0
,
spatial_dimension
,
id
+
":coordinates"
);
this
->
nodes_flags
=
std
::
make_shared
<
Array
<
NodeFlag
>>
(
0
,
1
,
NodeFlag
::
_normal
,
id
+
":nodes_flags"
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
const
ID
&
id
)
:
Mesh
(
spatial_dimension
,
Communicator
::
getStaticCommunicator
(),
id
)
{}
/* -------------------------------------------------------------------------- */
Mesh
::
Mesh
(
UInt
spatial_dimension
,
const
std
::
shared_ptr
<
Array
<
Real
>>
&
nodes
,
const
ID
&
id
)
:
Mesh
(
spatial_dimension
,
id
,
Communicator
::
getStaticCommunicator
())
{
this
->
nodes
=
nodes
;
this
->
nb_global_nodes
=
this
->
nodes
->
size
();
this
->
nodes_to_elements
.
resize
(
nodes
->
size
());
for
(
auto
&
node_set
:
nodes_to_elements
)
{
node_set
=
std
::
make_unique
<
std
::
set
<
Element
>>
();
}
this
->
computeBoundingBox
();
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
getBarycenters
(
Array
<
Real
>
&
barycenter
,
ElementType
type
,
GhostType
ghost_type
)
const
{
barycenter
.
resize
(
getNbElement
(
type
,
ghost_type
));
for
(
auto
&&
data
:
enumerate
(
make_view
(
barycenter
,
spatial_dimension
)))
{
getBarycenter
(
Element
{
type
,
UInt
(
std
::
get
<
0
>
(
data
)),
ghost_type
},
std
::
get
<
1
>
(
data
));
}
}
class
FacetGlobalConnectivityAccessor
:
public
DataAccessor
<
Element
>
{
public
:
FacetGlobalConnectivityAccessor
(
Mesh
&
mesh
)
:
global_connectivity
(
"global_connectivity"
,
"facet_connectivity_synchronizer"
)
{
global_connectivity
.
initialize
(
mesh
,
_spatial_dimension
=
_all_dimensions
,
_with_nb_element
=
true
,
_with_nb_nodes_per_element
=
true
,
_element_kind
=
_ek_regular
);
mesh
.
getGlobalConnectivity
(
global_connectivity
);
}
UInt
getNbData
(
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
override
{
UInt
size
=
0
;
if
(
tag
==
SynchronizationTag
::
_smmc_facets_conn
)
{
UInt
nb_nodes
=
Mesh
::
getNbNodesPerElementList
(
elements
);
size
+=
nb_nodes
*
sizeof
(
UInt
);
}
return
size
;
}
void
packData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
const
override
{
if
(
tag
==
SynchronizationTag
::
_smmc_facets_conn
)
{
for
(
const
auto
&
element
:
elements
)
{
const
auto
&
conns
=
global_connectivity
(
element
.
type
,
element
.
ghost_type
);
for
(
auto
n
:
arange
(
conns
.
getNbComponent
()))
{
buffer
<<
conns
(
element
.
element
,
n
);
}
}
}
}
void
unpackData
(
CommunicationBuffer
&
buffer
,
const
Array
<
Element
>
&
elements
,
const
SynchronizationTag
&
tag
)
override
{
if
(
tag
==
SynchronizationTag
::
_smmc_facets_conn
)
{
for
(
const
auto
&
element
:
elements
)
{
auto
&
conns
=
global_connectivity
(
element
.
type
,
element
.
ghost_type
);
for
(
auto
n
:
arange
(
conns
.
getNbComponent
()))
{
buffer
>>
conns
(
element
.
element
,
n
);
}
}
}
}
AKANTU_GET_MACRO
(
GlobalConnectivity
,
(
global_connectivity
),
decltype
(
auto
));
protected
:
ElementTypeMapArray
<
UInt
>
global_connectivity
;
};
/* -------------------------------------------------------------------------- */
Mesh
&
Mesh
::
initMeshFacets
(
const
ID
&
id
)
{
AKANTU_DEBUG_IN
();
if
(
mesh_facets
)
{
AKANTU_DEBUG_OUT
();
return
*
mesh_facets
;
}
mesh_facets
=
std
::
make_unique
<
Mesh
>
(
spatial_dimension
,
this
->
nodes
,
getID
()
+
":"
+
id
);
mesh_facets
->
mesh_parent
=
this
;
mesh_facets
->
is_mesh_facets
=
true
;
mesh_facets
->
nodes_flags
=
this
->
nodes_flags
;
mesh_facets
->
nodes_global_ids
=
this
->
nodes_global_ids
;
MeshUtils
::
buildAllFacets
(
*
this
,
*
mesh_facets
,
0
);
if
(
mesh
.
isDistributed
())
{
mesh_facets
->
is_distributed
=
true
;
mesh_facets
->
element_synchronizer
=
std
::
make_unique
<
FacetSynchronizer
>
(
*
mesh_facets
,
mesh
.
getElementSynchronizer
());
FacetGlobalConnectivityAccessor
data_accessor
(
*
mesh_facets
);
/// communicate
mesh_facets
->
element_synchronizer
->
synchronizeOnce
(
data_accessor
,
SynchronizationTag
::
_smmc_facets_conn
);
/// flip facets
MeshUtils
::
flipFacets
(
*
mesh_facets
,
data_accessor
.
getGlobalConnectivity
(),
_ghost
);
}
/// transfers the the mesh physical names to the mesh facets
if
(
not
this
->
hasData
(
"physical_names"
))
{
AKANTU_DEBUG_OUT
();
return
*
mesh_facets
;
}
auto
&
mesh_phys_data
=
this
->
getData
<
std
::
string
>
(
"physical_names"
);
auto
&
phys_data
=
mesh_facets
->
getData
<
std
::
string
>
(
"physical_names"
);
phys_data
.
initialize
(
*
mesh_facets
,
_spatial_dimension
=
spatial_dimension
-
1
,
_with_nb_element
=
true
);
ElementTypeMapArray
<
Real
>
barycenters
(
getID
(),
"temporary_barycenters"
);
barycenters
.
initialize
(
*
mesh_facets
,
_nb_component
=
spatial_dimension
,
_spatial_dimension
=
spatial_dimension
-
1
,
_with_nb_element
=
true
);
for
(
auto
&&
ghost_type
:
ghost_types
)
{
for
(
auto
&&
type
:
barycenters
.
elementTypes
(
spatial_dimension
-
1
,
ghost_type
))
{
mesh_facets
->
getBarycenters
(
barycenters
(
type
,
ghost_type
),
type
,
ghost_type
);
}
}
for_each_element
(
mesh
,
[
&
](
auto
&&
element
)
{
Vector
<
Real
>
barycenter
(
spatial_dimension
);
mesh
.
getBarycenter
(
element
,
barycenter
);
auto
norm_barycenter
=
barycenter
.
norm
();
auto
tolerance
=
Math
::
getTolerance
();
if
(
norm_barycenter
>
tolerance
)
{
tolerance
*=
norm_barycenter
;
}
const
auto
&
element_to_facet
=
mesh_facets
->
getElementToSubelement
(
element
.
type
,
element
.
ghost_type
);
Vector
<
Real
>
barycenter_facet
(
spatial_dimension
);
auto
range
=
enumerate
(
make_view
(
barycenters
(
element
.
type
,
element
.
ghost_type
),
spatial_dimension
));
#ifndef AKANTU_NDEBUG
auto
min_dist
=
std
::
numeric_limits
<
Real
>::
max
();
#endif
// this is a spacial search coded the most inefficient way.
auto
facet
=
std
::
find_if
(
range
.
begin
(),
range
.
end
(),
[
&
](
auto
&&
data
)
{
auto
facet
=
std
::
get
<
0
>
(
data
);
if
(
element_to_facet
(
facet
)[
1
]
==
ElementNull
)
{
return
false
;
}
auto
norm_distance
=
barycenter
.
distance
(
std
::
get
<
1
>
(
data
));
#ifndef AKANTU_NDEBUG
min_dist
=
std
::
min
(
min_dist
,
norm_distance
);
#endif
return
(
norm_distance
<
tolerance
);
});
if
(
facet
==
range
.
end
())
{
AKANTU_DEBUG_INFO
(
"The element "
<<
element
<<
" did not find its associated facet in the "
"mesh_facets! Try to decrease math tolerance. "
"The closest element was at a distance of "
<<
min_dist
);
return
;
}
// set physical name
auto
&&
facet_element
=
Element
{
element
.
type
,
UInt
(
std
::
get
<
0
>
(
*
facet
)),
element
.
ghost_type
};
phys_data
(
facet_element
)
=
mesh_phys_data
(
element
);
},
_spatial_dimension
=
spatial_dimension
-
1
);
mesh_facets
->
createGroupsFromMeshData
<
std
::
string
>
(
"physical_names"
);
AKANTU_DEBUG_OUT
();
return
*
mesh_facets
;
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
defineMeshParent
(
const
Mesh
&
mesh
)
{
AKANTU_DEBUG_IN
();
this
->
mesh_parent
=
&
mesh
;
this
->
is_mesh_facets
=
true
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Mesh
::~
Mesh
()
=
default
;
/* -------------------------------------------------------------------------- */
void
Mesh
::
read
(
const
std
::
string
&
filename
,
const
MeshIOType
&
mesh_io_type
)
{
AKANTU_DEBUG_ASSERT
(
not
is_distributed
,
"You cannot read a mesh that is already distributed"
);
MeshIO
::
read
(
filename
,
*
this
,
mesh_io_type
);
auto
types
=
this
->
elementTypes
(
spatial_dimension
,
_not_ghost
,
_ek_not_defined
);
auto
it
=
types
.
begin
();
auto
last
=
types
.
end
();
if
(
it
==
last
)
{
AKANTU_DEBUG_WARNING
(
"The mesh contained in the file "
<<
filename
<<
" does not seem to be of the good dimension."
<<
" No element of dimension "
<<
spatial_dimension
<<
" were read."
);
}
this
->
makeReady
();
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
write
(
const
std
::
string
&
filename
,
const
MeshIOType
&
mesh_io_type
)
{
MeshIO
::
write
(
filename
,
*
this
,
mesh_io_type
);
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
makeReady
()
{
this
->
nb_global_nodes
=
this
->
nodes
->
size
();
this
->
computeBoundingBox
();
this
->
nodes_flags
->
resize
(
nodes
->
size
(),
NodeFlag
::
_normal
);
this
->
nodes_to_elements
.
resize
(
nodes
->
size
());
for
(
auto
&
node_set
:
nodes_to_elements
)
{
node_set
=
std
::
make_unique
<
std
::
set
<
Element
>>
();
}
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
(
indent
,
AKANTU_INDENT
);
stream
<<
space
<<
"Mesh ["
<<
std
::
endl
;
stream
<<
space
<<
" + id : "
<<
getID
()
<<
std
::
endl
;
stream
<<
space
<<
" + spatial dimension : "
<<
this
->
spatial_dimension
<<
std
::
endl
;
stream
<<
space
<<
" + nodes ["
<<
std
::
endl
;
nodes
->
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" + connectivities ["
<<
std
::
endl
;
connectivities
.
printself
(
stream
,
indent
+
2
);
stream
<<
space
<<
" ]"
<<
std
::
endl
;
GroupManager
::
printself
(
stream
,
indent
+
1
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
computeBoundingBox
()
{
AKANTU_DEBUG_IN
();
bbox_local
.
reset
();
for
(
auto
&
pos
:
make_view
(
*
nodes
,
spatial_dimension
))
{
// if(!isPureGhostNode(i))
bbox_local
+=
pos
;
}
if
(
this
->
is_distributed
)
{
bbox
=
bbox_local
.
allSum
(
*
communicator
);
}
else
{
bbox
=
bbox_local
;
}
size
=
bbox
.
size
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
initNormals
()
{
normals
.
initialize
(
*
this
,
_nb_component
=
spatial_dimension
,
_spatial_dimension
=
spatial_dimension
,
_element_kind
=
_ek_not_defined
);
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
getGlobalConnectivity
(
ElementTypeMapArray
<
UInt
>
&
global_connectivity
)
{
AKANTU_DEBUG_IN
();
for
(
auto
&&
ghost_type
:
ghost_types
)
{
for
(
auto
type
:
global_connectivity
.
elementTypes
(
_spatial_dimension
=
_all_dimensions
,
_element_kind
=
_ek_not_defined
,
_ghost_type
=
ghost_type
))
{
if
(
not
connectivities
.
exists
(
type
,
ghost_type
))
{
continue
;
}
auto
&
local_conn
=
connectivities
(
type
,
ghost_type
);
auto
&
g_connectivity
=
global_connectivity
(
type
,
ghost_type
);
UInt
nb_nodes
=
local_conn
.
size
()
*
local_conn
.
getNbComponent
();
std
::
transform
(
local_conn
.
begin_reinterpret
(
nb_nodes
),
local_conn
.
end_reinterpret
(
nb_nodes
),
g_connectivity
.
begin_reinterpret
(
nb_nodes
),
[
&
](
UInt
l
)
->
UInt
{
return
this
->
getNodeGlobalId
(
l
);
});
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
DumperIOHelper
&
Mesh
::
getGroupDumper
(
const
std
::
string
&
dumper_name
,
const
std
::
string
&
group_name
)
{
if
(
group_name
==
"all"
)
{
return
this
->
getDumper
(
dumper_name
);
}
return
element_groups
[
group_name
]
->
getDumper
(
dumper_name
);
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
ElementTypeMap
<
UInt
>
Mesh
::
getNbDataPerElem
(
ElementTypeMapArray
<
T
>
&
arrays
)
{
ElementTypeMap
<
UInt
>
nb_data_per_elem
;
for
(
auto
type
:
arrays
.
elementTypes
(
_element_kind
=
_ek_not_defined
))
{
UInt
nb_elements
=
this
->
getNbElement
(
type
);
auto
&
array
=
arrays
(
type
);
nb_data_per_elem
(
type
)
=
array
.
getNbComponent
()
*
array
.
size
();
nb_data_per_elem
(
type
)
/=
nb_elements
;
}
return
nb_data_per_elem
;
}
/* -------------------------------------------------------------------------- */
template
ElementTypeMap
<
UInt
>
Mesh
::
getNbDataPerElem
(
ElementTypeMapArray
<
Real
>
&
array
);
template
ElementTypeMap
<
UInt
>
Mesh
::
getNbDataPerElem
(
ElementTypeMapArray
<
UInt
>
&
array
);
/* -------------------------------------------------------------------------- */
#ifdef AKANTU_USE_IOHELPER
template
<
typename
T
>
std
::
shared_ptr
<
dumpers
::
Field
>
Mesh
::
createFieldFromAttachedData
(
const
std
::
string
&
field_id
,
const
std
::
string
&
group_name
,
ElementKind
element_kind
)
{
std
::
shared_ptr
<
dumpers
::
Field
>
field
;
ElementTypeMapArray
<
T
>
*
internal
=
nullptr
;
try
{
internal
=
&
(
this
->
getData
<
T
>
(
field_id
));
}
catch
(...)
{
return
nullptr
;
}
ElementTypeMap
<
UInt
>
nb_data_per_elem
=
this
->
getNbDataPerElem
(
*
internal
);
field
=
this
->
createElementalField
<
T
,
dumpers
::
InternalMaterialField
>
(
*
internal
,
group_name
,
this
->
spatial_dimension
,
element_kind
,
nb_data_per_elem
);
return
field
;
}
template
std
::
shared_ptr
<
dumpers
::
Field
>
Mesh
::
createFieldFromAttachedData
<
Real
>
(
const
std
::
string
&
field_id
,
const
std
::
string
&
group_name
,
ElementKind
element_kind
);
template
std
::
shared_ptr
<
dumpers
::
Field
>
Mesh
::
createFieldFromAttachedData
<
UInt
>
(
const
std
::
string
&
field_id
,
const
std
::
string
&
group_name
,
ElementKind
element_kind
);
#endif
/* -------------------------------------------------------------------------- */
void
Mesh
::
distributeImpl
(
Communicator
&
communicator
,
const
std
::
function
<
Int
(
const
Element
&
,
const
Element
&
)
>
&
edge_weight_function
[[
gnu
::
unused
]],
const
std
::
function
<
Int
(
const
Element
&
)
>
&
vertex_weight_function
[[
gnu
::
unused
]])
{
AKANTU_DEBUG_ASSERT
(
is_distributed
==
false
,
"This mesh is already distribute"
);
this
->
communicator
=
&
communicator
;
this
->
element_synchronizer
=
std
::
make_unique
<
ElementSynchronizer
>
(
*
this
,
this
->
getID
()
+
":element_synchronizer"
,
true
);
this
->
node_synchronizer
=
std
::
make_unique
<
NodeSynchronizer
>
(
*
this
,
this
->
getID
()
+
":node_synchronizer"
,
true
);
Int
psize
=
this
->
communicator
->
getNbProc
();
if
(
psize
>
1
)
{
#ifdef AKANTU_USE_SCOTCH
Int
prank
=
this
->
communicator
->
whoAmI
();
if
(
prank
==
0
)
{
MeshPartitionScotch
partition
(
*
this
,
spatial_dimension
);
partition
.
partitionate
(
psize
,
edge_weight_function
,
vertex_weight_function
);
MeshUtilsDistribution
::
distributeMeshCentralized
(
*
this
,
0
,
partition
);
}
else
{
MeshUtilsDistribution
::
distributeMeshCentralized
(
*
this
,
0
);
}
#else
if
(
psize
>
1
)
{
AKANTU_ERROR
(
"Cannot distribute a mesh without a partitioning tool"
);
}
#endif
}
// if (psize > 1)
this
->
is_distributed
=
true
;
this
->
computeBoundingBox
();
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
getAssociatedElements
(
const
Array
<
UInt
>
&
node_list
,
Array
<
Element
>
&
elements
)
{
for
(
const
auto
&
node
:
node_list
)
{
for
(
const
auto
&
element
:
*
nodes_to_elements
[
node
])
{
elements
.
push_back
(
element
);
}
}
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
fillNodesToElements
()
{
Element
e
;
UInt
nb_nodes
=
nodes
->
size
();
for
(
UInt
n
=
0
;
n
<
nb_nodes
;
++
n
)
{
if
(
this
->
nodes_to_elements
[
n
])
{
this
->
nodes_to_elements
[
n
]
->
clear
();
}
else
{
this
->
nodes_to_elements
[
n
]
=
std
::
make_unique
<
std
::
set
<
Element
>>
();
}
}
for
(
auto
ghost_type
:
ghost_types
)
{
e
.
ghost_type
=
ghost_type
;
for
(
const
auto
&
type
:
elementTypes
(
spatial_dimension
,
ghost_type
,
_ek_not_defined
))
{
e
.
type
=
type
;
UInt
nb_element
=
this
->
getNbElement
(
type
,
ghost_type
);
Array
<
UInt
>::
const_iterator
<
Vector
<
UInt
>>
conn_it
=
connectivities
(
type
,
ghost_type
)
.
begin
(
Mesh
::
getNbNodesPerElement
(
type
));
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
,
++
conn_it
)
{
e
.
element
=
el
;
const
Vector
<
UInt
>
&
conn
=
*
conn_it
;
for
(
UInt
n
=
0
;
n
<
conn
.
size
();
++
n
)
{
nodes_to_elements
[
conn
(
n
)]
->
insert
(
e
);
}
}
}
}
}
/* -------------------------------------------------------------------------- */
std
::
tuple
<
UInt
,
UInt
>
Mesh
::
updateGlobalData
(
NewNodesEvent
&
nodes_event
,
NewElementsEvent
&
elements_event
)
{
if
(
global_data_updater
)
{
return
this
->
global_data_updater
->
updateData
(
nodes_event
,
elements_event
);
}
return
std
::
make_tuple
(
nodes_event
.
getList
().
size
(),
elements_event
.
getList
().
size
());
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
registerGlobalDataUpdater
(
std
::
unique_ptr
<
MeshGlobalDataUpdater
>
&&
global_data_updater
)
{
this
->
global_data_updater
=
std
::
move
(
global_data_updater
);
}
/* -------------------------------------------------------------------------- */
void
Mesh
::
eraseElements
(
const
Array
<
Element
>
&
elements
)
{
ElementTypeMap
<
UInt
>
last_element
;
RemovedElementsEvent
event
(
*
this
,
"new_numbering"
,
AKANTU_CURRENT_FUNCTION
);
auto
&
remove_list
=
event
.
getList
();
auto
&
new_numbering
=
event
.
getNewNumbering
();
for
(
auto
&&
el
:
elements
)
{
if
(
el
.
ghost_type
!=
_not_ghost
)
{
auto
&
count
=
ghosts_counters
(
el
);
--
count
;
if
(
count
>
0
)
{
continue
;
}
}
remove_list
.
push_back
(
el
);
if
(
not
new_numbering
.
exists
(
el
.
type
,
el
.
ghost_type
))
{
auto
nb_element
=
mesh
.
getNbElement
(
el
.
type
,
el
.
ghost_type
);
auto
&
numbering
=
new_numbering
.
alloc
(
nb_element
,
1
,
el
.
type
,
el
.
ghost_type
);
for
(
auto
&&
pair
:
enumerate
(
numbering
))
{
std
::
get
<
1
>
(
pair
)
=
std
::
get
<
0
>
(
pair
);
}
}
new_numbering
(
el
)
=
UInt
(
-
1
);
}
auto
find_last_not_deleted
=
[](
auto
&&
array
,
Int
start
)
->
Int
{
do
{
--
start
;
}
while
(
start
>=
0
and
array
[
start
]
==
UInt
(
-
1
));
return
start
;
};
auto
find_first_deleted
=
[](
auto
&&
array
,
Int
start
)
->
Int
{
auto
begin
=
array
.
begin
();
auto
it
=
std
::
find_if
(
begin
+
start
,
array
.
end
(),
[](
auto
&
el
)
{
return
el
==
UInt
(
-
1
);
});
return
Int
(
it
-
begin
);
};
for
(
auto
ghost_type
:
ghost_types
)
{
for
(
auto
type
:
new_numbering
.
elementTypes
(
_ghost_type
=
ghost_type
))
{
auto
&
numbering
=
new_numbering
(
type
,
ghost_type
);
auto
last_not_delete
=
find_last_not_deleted
(
numbering
,
numbering
.
size
());
if
(
last_not_delete
<
0
)
{
continue
;
}
auto
pos
=
find_first_deleted
(
numbering
,
0
);
while
(
pos
<
last_not_delete
)
{
std
::
swap
(
numbering
[
pos
],
numbering
[
last_not_delete
]);
last_not_delete
=
find_last_not_deleted
(
numbering
,
last_not_delete
);
pos
=
find_first_deleted
(
numbering
,
pos
+
1
);
}
}
}
this
->
sendEvent
(
event
);
}
}
// namespace akantu
Event Timeline
Log In to Comment