Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90380758
resolution.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 03:24
Size
12 KB
Mime Type
text/x-c
Expires
Sun, Nov 3, 03:24 (2 d)
Engine
blob
Format
Raw Data
Handle
22063253
Attached To
rAKA akantu
resolution.cc
View Options
/**
* @file resolution.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Mon Jan 7 2019
* @date last modification: Mon Jan 7 2019
*
* @brief Implementation of common part of the contact resolution class
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "resolution.hh"
#include "contact_mechanics_model.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
Resolution
::
Resolution
(
ContactMechanicsModel
&
model
,
const
ID
&
id
)
:
Memory
(
id
,
model
.
getMemoryID
()),
Parsable
(
ParserType
::
_contact_resolution
,
id
),
fem
(
model
.
getFEEngine
()),
name
(
""
),
model
(
model
),
spatial_dimension
(
model
.
getMesh
().
getSpatialDimension
()){
AKANTU_DEBUG_IN
();
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Resolution
::~
Resolution
()
=
default
;
/* -------------------------------------------------------------------------- */
void
Resolution
::
initialize
()
{
registerParam
(
"name"
,
name
,
std
::
string
(),
_pat_parsable
|
_pat_readable
);
registerParam
(
"mu"
,
mu
,
Real
(
0.
),
_pat_parsable
|
_pat_modifiable
,
"Friciton Coefficient"
);
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
)
;
std
::
string
type
=
getID
().
substr
(
getID
().
find_last_of
(
':'
)
+
1
);
stream
<<
space
<<
"Contact Resolution "
<<
type
<<
" ["
<<
std
::
endl
;
Parsable
::
printself
(
stream
,
indent
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
assembleInternalForces
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
auto
&
internal_force
=
const_cast
<
Array
<
Real
>
&>
(
model
.
getInternalForce
());
auto
&
contact_area
=
const_cast
<
Array
<
Real
>
&>
(
model
.
getContactArea
());
auto
&
contact_map
=
model
.
getContactMap
();
const
auto
slave_nodes
=
model
.
getMesh
().
getElementGroup
(
name
).
getNodes
();
for
(
auto
&
slave:
slave_nodes
)
{
if
(
contact_map
.
find
(
slave
)
==
contact_map
.
end
())
continue
;
auto
&
master
=
contact_map
[
slave
].
master
;
auto
&
gap
=
contact_map
[
slave
].
gap
;
auto
&
projection
=
contact_map
[
slave
].
projection
;
auto
&
normal
=
contact_map
[
slave
].
normal
;
const
auto
&
connectivity
=
contact_map
[
slave
].
connectivity
;
const
ElementType
&
type
=
master
.
type
;
UInt
nb_nodes_master
=
Mesh
::
getNbNodesPerElement
(
master
.
type
);
Vector
<
Real
>
shapes
(
nb_nodes_master
);
Matrix
<
Real
>
shapes_derivatives
(
spatial_dimension
-
1
,
nb_nodes_master
);
#define GET_SHAPES_NATURAL(type) \
ElementClass<type>::computeShapes(projection, shapes)
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_SHAPES_NATURAL
);
#undef GET_SHAPES_NATURAL
#define GET_SHAPE_DERIVATIVES_NATURAL(type) \
ElementClass<type>::computeDNDS(projection, shapes_derivatives)
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_SHAPE_DERIVATIVES_NATURAL
);
#undef GET_SHAPE_DERIVATIVES_NATURAL
Vector
<
Real
>
elem_force
(
connectivity
.
size
()
*
spatial_dimension
);
Matrix
<
Real
>
tangents
(
spatial_dimension
-
1
,
spatial_dimension
);
Matrix
<
Real
>
global_coords
(
nb_nodes_master
,
spatial_dimension
);
computeCoordinates
(
master
,
global_coords
);
computeTangents
(
shapes_derivatives
,
global_coords
,
tangents
);
Matrix
<
Real
>
surface_matrix
(
spatial_dimension
-
1
,
spatial_dimension
-
1
);
computeSurfaceMatrix
(
tangents
,
surface_matrix
);
Vector
<
Real
>
n
(
connectivity
.
size
()
*
spatial_dimension
);
computeN
(
n
,
shapes
,
normal
);
computeNormalForce
(
elem_force
,
n
,
gap
);
Array
<
Real
>
t_alpha
(
connectivity
.
size
()
*
spatial_dimension
,
spatial_dimension
-
1
);
Array
<
Real
>
n_alpha
(
connectivity
.
size
()
*
spatial_dimension
,
spatial_dimension
-
1
);
Array
<
Real
>
d_alpha
(
connectivity
.
size
()
*
spatial_dimension
,
spatial_dimension
-
1
);
computeTalpha
(
t_alpha
,
shapes
,
tangents
);
computeNalpha
(
n_alpha
,
shapes_derivatives
,
normal
);
computeDalpha
(
d_alpha
,
n_alpha
,
t_alpha
,
surface_matrix
,
gap
);
//computeFrictionForce(elem_force, d_alpha, gap);
UInt
nb_degree_of_freedom
=
internal_force
.
getNbComponent
();
for
(
UInt
i
=
0
;
i
<
connectivity
.
size
();
++
i
)
{
UInt
n
=
connectivity
[
i
];
for
(
UInt
j
=
0
;
j
<
nb_degree_of_freedom
;
++
j
)
{
UInt
offset_node
=
n
*
nb_degree_of_freedom
+
j
;
internal_force
[
offset_node
]
+=
elem_force
[
i
*
nb_degree_of_freedom
+
j
];
internal_force
[
offset_node
]
*=
contact_area
[
n
];
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
assembleStiffnessMatrix
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
auto
&
contact_stiffness
=
model
.
getDOFManager
().
getMatrix
(
"K"
);
const
auto
slave_nodes
=
model
.
getMesh
().
getElementGroup
(
name
).
getNodes
();
auto
&
contact_map
=
model
.
getContactMap
();
for
(
auto
&
slave:
slave_nodes
)
{
if
(
contact_map
.
find
(
slave
)
==
contact_map
.
end
())
{
continue
;
}
auto
&
master
=
contact_map
[
slave
].
master
;
auto
&
gap
=
contact_map
[
slave
].
gap
;
auto
&
projection
=
contact_map
[
slave
].
projection
;
auto
&
normal
=
contact_map
[
slave
].
normal
;
const
auto
&
connectivity
=
contact_map
[
slave
].
connectivity
;
const
ElementType
&
type
=
master
.
type
;
UInt
nb_nodes_master
=
Mesh
::
getNbNodesPerElement
(
master
.
type
);
Vector
<
Real
>
shapes
(
nb_nodes_master
);
Matrix
<
Real
>
shapes_derivatives
(
spatial_dimension
-
1
,
nb_nodes_master
);
#define GET_SHAPES_NATURAL(type) \
ElementClass<type>::computeShapes(projection, shapes)
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_SHAPES_NATURAL
);
#undef GET_SHAPES_NATURAL
#define GET_SHAPE_DERIVATIVES_NATURAL(type) \
ElementClass<type>::computeDNDS(projection, shapes_derivatives)
AKANTU_BOOST_ALL_ELEMENT_SWITCH
(
GET_SHAPE_DERIVATIVES_NATURAL
);
#undef GET_SHAPE_DERIVATIVES_NATURAL
Matrix
<
Real
>
elementary_stiffness
(
connectivity
.
size
()
*
spatial_dimension
,
connectivity
.
size
()
*
spatial_dimension
);
Matrix
<
Real
>
tangents
(
spatial_dimension
-
1
,
spatial_dimension
);
Matrix
<
Real
>
global_coords
(
nb_nodes_master
,
spatial_dimension
);
computeCoordinates
(
master
,
global_coords
);
computeTangents
(
shapes_derivatives
,
global_coords
,
tangents
);
Matrix
<
Real
>
surface_matrix
(
spatial_dimension
-
1
,
spatial_dimension
-
1
);
computeSurfaceMatrix
(
tangents
,
surface_matrix
);
Vector
<
Real
>
n
(
connectivity
.
size
()
*
spatial_dimension
);
Array
<
Real
>
t_alpha
(
connectivity
.
size
()
*
spatial_dimension
,
spatial_dimension
-
1
);
Array
<
Real
>
n_alpha
(
connectivity
.
size
()
*
spatial_dimension
,
spatial_dimension
-
1
);
Array
<
Real
>
d_alpha
(
connectivity
.
size
()
*
spatial_dimension
,
spatial_dimension
-
1
);
computeN
(
n
,
shapes
,
normal
);
computeTalpha
(
t_alpha
,
shapes
,
tangents
);
computeNalpha
(
n_alpha
,
shapes_derivatives
,
normal
);
computeDalpha
(
d_alpha
,
n_alpha
,
t_alpha
,
surface_matrix
,
gap
);
//computeTangentModuli(n, n_alpha, t_alpha, d_alpha, gap);
/*std::vector<UInt> equations;
UInt nb_degree_of_freedom = Model::spatial_dimension;
for (UInt i : arange(connectivity.size())) {
UInt n = connectivity[i];
for (UInt j : arange(nb_degree_of_freedom))
equations.push_back(n * degree_of_freedom + j);
}
for (UInt i : arange(kc.rows())) {
UInt row = equations[i];
for (UInt j : arange(kc.cols())) {
UInt col = equations[j];
contact_stiffness(row, col) += kc(i, j);
}
}*/
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
computeTangents
(
Matrix
<
Real
>
&
shapes_derivatives
,
Matrix
<
Real
>
&
global_coords
,
Matrix
<
Real
>
&
tangents
)
{
/*UInt index = 0;
for (auto && values : zip(make_view(tangents, spatial_dimension))) {
auto & tangent = std::get<0>(values);
for (UInt n : arange(global_coords.getNbComponent())) {
tangent += shapes_derivatives(n, index) * global_coords(n);
}
++index;
}*/
tangents
.
mul
<
false
,
true
>
(
shapes_derivatives
,
global_coords
);
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
computeSurfaceMatrix
(
Matrix
<
Real
>
&
tangents
,
Matrix
<
Real
>
&
surface_matrix
)
{
/*Matrix<Real> A(surface_matrix);
for (UInt i : arange(spatial_dimension - 1)) {
for (UInt j : arange(spatial_dimension -1 )) {
A(i, j) = tangents(i) * tangents(j);
}
}*/
surface_matrix
.
mul
<
false
,
true
>
(
tangents
,
tangents
);
surface_matrix
=
surface_matrix
.
inverse
();
//A.inverse(surface_matrix);
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
computeN
(
Vector
<
Real
>
&
n
,
Vector
<
Real
>
&
shapes
,
Vector
<
Real
>
&
normal
)
{
UInt
dim
=
normal
.
size
();
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
{
n
[
i
]
=
normal
[
i
];
for
(
UInt
j
=
0
;
j
<
shapes
.
size
();
++
j
)
{
n
[(
1
+
j
)
*
dim
+
i
]
=
-
normal
[
i
]
*
shapes
[
j
];
}
}
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
computeTalpha
(
Array
<
Real
>
&
t_alpha
,
Vector
<
Real
>
&
shapes
,
Matrix
<
Real
>
&
tangents
)
{
/*for (auto && values:
zip(tangents.transpose(),
make_view(t_alpha, t_alpha.size()))) {
auto & tangent = std::get<0>(values);
auto & t_s = std::get<1>(values);
for (UInt i : arange(spatial_dimension)) {
t_s[i] = -tangent(i);
for (UInt j : arange(shapes.size())) {
t_s[(1 + j)*spatial_dimension + i] = -shapes[j] * tangent(i);
}
}
}*/
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
computeNalpha
(
Array
<
Real
>
&
n_alpha
,
Matrix
<
Real
>
&
shapes_derivatives
,
Vector
<
Real
>
&
normal
)
{
/*for (auto && values:
zip(shapes_derivatives.transpose(),
make_view(n_alpha, n_alpha.size()))) {
auto & dnds = std::get<0>(values);
auto & n_s = std::get<1>(values);
for (UInt i : arange(spatial_dimension)) {
n_s[i] = 0;
for (UInt j : arange(shapes_derivatives.size())) {
n_s[(1 + j)*spatial_dimension + i] = -shapes_derivatives[j]*normal[i];
}
}
}*/
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
computeDalpha
(
Array
<
Real
>
&
d_alpha
,
Array
<
Real
>
&
n_alpha
,
Array
<
Real
>
&
t_alpha
,
Matrix
<
Real
>
&
surface_matrix
,
Real
&
gap
)
{
/*for (auto && entry : zip(surface_matrix.transpose(),
make_view(d_alpha, d_alpha.size()))) {
auto & a_s = std::get<0>(entry);
auto & d_s = std::get<1>(entry);
for (auto && values :
enumerate(make_view(t_alpha, t_alpha.size()),
make_view(n_alpha, n_alpha.size()))) {
auto & index = std::get<0>(values);
auto & t_s = std::get<1>(values);
auto & n_s = std::get<2>(values);
d_s += (t_s + gap * n_s);
d_s *= a_s(index);
}
}*/
}
/* -------------------------------------------------------------------------- */
void
Resolution
::
computeCoordinates
(
const
Element
&
el
,
Matrix
<
Real
>
&
coords
)
{
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
el
.
type
);
Vector
<
UInt
>
connect
=
model
.
getMesh
().
getConnectivity
(
el
.
type
,
_not_ghost
)
.
begin
(
nb_nodes_per_element
)[
el
.
element
];
// change this to current position
auto
&
positions
=
model
.
getMesh
().
getNodes
();
for
(
UInt
n
=
0
;
n
<
nb_nodes_per_element
;
++
n
)
{
UInt
node
=
connect
[
n
];
for
(
UInt
s:
arange
(
spatial_dimension
))
{
coords
(
n
,
s
)
=
positions
(
node
,
s
);
}
}
}
}
// akantu
Event Timeline
Log In to Comment