Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90899770
sparse_matrix_aij_inline_impl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Tue, Nov 5, 19:14
Size
6 KB
Mime Type
text/x-c
Expires
Thu, Nov 7, 19:14 (2 d)
Engine
blob
Format
Raw Data
Handle
22055518
Attached To
rAKA akantu
sparse_matrix_aij_inline_impl.hh
View Options
/**
* @file sparse_matrix_aij_inline_impl.hh
*
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Aug 21 2015
* @date last modification: Tue Mar 31 2020
*
* @brief Implementation of inline functions of SparseMatrixAIJ
*
*
* @section LICENSE
*
* Copyright (©) 2015-2021 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "sparse_matrix_aij.hh"
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_SPARSE_MATRIX_AIJ_INLINE_IMPL_HH_
#define AKANTU_SPARSE_MATRIX_AIJ_INLINE_IMPL_HH_
namespace akantu {
inline UInt SparseMatrixAIJ::add(UInt i, UInt j) {
KeyCOO jcn_irn = this->key(i, j);
auto it = this->irn_jcn_k.find(jcn_irn);
if (!(it == this->irn_jcn_k.end())) {
return it->second;
}
if (i + 1 > this->size_) {
this->size_ = i + 1;
}
if (j + 1 > this->size_) {
this->size_ = j + 1;
}
this->irn.push_back(i + 1);
this->jcn.push_back(j + 1);
this->a.push_back(0.);
this->irn_jcn_k[jcn_irn] = this->nb_non_zero;
(this->nb_non_zero)++;
this->profile_release++;
this->value_release++;
return (this->nb_non_zero - 1);
}
/* -------------------------------------------------------------------------- */
inline void SparseMatrixAIJ::clearProfile() {
SparseMatrix::clearProfile();
this->irn_jcn_k.clear();
this->irn.clear();
this->jcn.clear();
this->a.clear();
this->size_ = 0;
this->nb_non_zero = 0;
this->profile_release++;
this->value_release++;
}
/* -------------------------------------------------------------------------- */
inline void SparseMatrixAIJ::add(UInt i, UInt j, Real value) {
UInt idx = this->add(i, j);
this->a(idx) += value;
this->value_release++;
}
/* -------------------------------------------------------------------------- */
inline Real SparseMatrixAIJ::operator()(UInt i, UInt j) const {
KeyCOO jcn_irn = this->key(i, j);
auto irn_jcn_k_it = this->irn_jcn_k.find(jcn_irn);
if (irn_jcn_k_it == this->irn_jcn_k.end()) {
return 0.;
}
return this->a(irn_jcn_k_it->second);
}
/* -------------------------------------------------------------------------- */
inline Real & SparseMatrixAIJ::operator()(UInt i, UInt j) {
KeyCOO jcn_irn = this->key(i, j);
auto irn_jcn_k_it = this->irn_jcn_k.find(jcn_irn);
AKANTU_DEBUG_ASSERT(irn_jcn_k_it != this->irn_jcn_k.end(),
"Couple (i,j) = (" << i << "," << j
<< ") does not exist in the profile");
// it may change the profile so it is considered as a change
this->value_release++;
return this->a(irn_jcn_k_it->second);
}
/* -------------------------------------------------------------------------- */
inline void
SparseMatrixAIJ::addSymmetricValuesToSymmetric(const Vector<Int> & is,
const Vector<Int> & js,
const Matrix<Real> & values) {
for (UInt i = 0; i < values.rows(); ++i) {
UInt c_irn = is(i);
if (c_irn < size_) {
for (UInt j = i; j < values.cols(); ++j) {
UInt c_jcn = js(j);
if (c_jcn < size_) {
operator()(c_irn, c_jcn) += values(i, j);
}
}
}
}
}
/* -------------------------------------------------------------------------- */
inline void
SparseMatrixAIJ::addUnsymmetricValuesToSymmetric(const Vector<Int> & is,
const Vector<Int> & js,
const Matrix<Real> & values) {
for (UInt i = 0; i < values.rows(); ++i) {
UInt c_irn = is(i);
if (c_irn < size_) {
for (UInt j = 0; j < values.cols(); ++j) {
UInt c_jcn = js(j);
if (c_jcn < size_) {
if (c_jcn >= c_irn) {
operator()(c_irn, c_jcn) += values(i, j);
}
}
}
}
}
}
/* -------------------------------------------------------------------------- */
inline void
SparseMatrixAIJ::addValuesToUnsymmetric(const Vector<Int> & is,
const Vector<Int> & js,
const Matrix<Real> & values) {
for (UInt i = 0; i < values.rows(); ++i) {
UInt c_irn = is(i);
if (c_irn < size_) {
for (UInt j = 0; j < values.cols(); ++j) {
UInt c_jcn = js(j);
if (c_jcn < size_) {
operator()(c_irn, c_jcn) += values(i, j);
}
}
}
}
}
/* -------------------------------------------------------------------------- */
inline void SparseMatrixAIJ::addValues(const Vector<Int> & is,
const Vector<Int> & js,
const Matrix<Real> & values,
MatrixType values_type) {
if (getMatrixType() == _symmetric) {
if (values_type == _symmetric) {
this->addSymmetricValuesToSymmetric(is, js, values);
} else {
this->addUnsymmetricValuesToSymmetric(is, js, values);
}
} else {
this->addValuesToUnsymmetric(is, js, values);
}
}
/* -------------------------------------------------------------------------- */
inline Real SparseMatrixAIJ::min() {
return *std::min(this->a.begin(), this->a.end());
}
} // namespace akantu
#endif /* AKANTU_SPARSE_MATRIX_AIJ_INLINE_IMPL_HH_ */
Event Timeline
Log In to Comment