Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90502707
shape_linked_inline_impl.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sat, Nov 2, 06:40
Size
11 KB
Mime Type
text/x-c++
Expires
Mon, Nov 4, 06:40 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22014374
Attached To
rAKA akantu
shape_linked_inline_impl.cc
View Options
/**
* @file shape_linked_inline_impl.cc
*
* @author Fabian Barras <fabian.barras@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Mon Dec 13 2010
* @date last modification: Thu Oct 15 2015
*
* @brief ShapeLinked inline implementation
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
template
<
ElementKind
kind
>
inline
void
ShapeLinked
<
kind
>::
initShapeFunctions
(
const
Array
<
Real
>
&
nodes
,
const
Matrix
<
Real
>
&
integration_points
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
}
#undef INIT_SHAPE_FUNCTIONS
/* -------------------------------------------------------------------------- */
#define INIT_SHAPE_FUNCTIONS(type) \
setIntegrationPointsByType<type>(integration_points, ghost_type); \
precomputeShapesOnIntegrationPoints<type>(nodes, ghost_type); \
precomputeShapeDerivativesOnIntegrationPoints<type>(nodes, ghost_type);
#if defined(AKANTU_STRUCTURAL_MECHANICS)
template
<>
inline
void
ShapeLinked
<
_ek_structural
>::
initShapeFunctions
(
__attribute__
((
unused
))
const
Array
<
Real
>
&
nodes
,
__attribute__
((
unused
))
const
Matrix
<
Real
>
&
integration_points
,
__attribute__
((
unused
))
const
ElementType
&
type
,
__attribute__
((
unused
))
const
GhostType
&
ghost_type
)
{
AKANTU_BOOST_STRUCTURAL_ELEMENT_SWITCH
(
INIT_SHAPE_FUNCTIONS
);
}
#endif
#undef INIT_SHAPE_FUNCTIONS
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
inline
const
Array
<
Real
>
&
ShapeLinked
<
kind
>::
getShapes
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
,
UInt
id
)
const
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
(
shapes
.
exists
(
type
,
ghost_type
),
"No shapes of type "
<<
type
<<
" in "
<<
this
->
id
);
AKANTU_DEBUG_OUT
();
return
*
(
shapes
(
type
,
ghost_type
)[
id
]);
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
inline
const
Array
<
Real
>
&
ShapeLinked
<
kind
>::
getShapesDerivatives
(
const
ElementType
&
type
,
const
GhostType
&
ghost_type
,
UInt
id
)
const
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
(
shapes_derivatives
.
exists
(
type
,
ghost_type
),
"No shapes_derivatives of type "
<<
type
<<
" in "
<<
this
->
id
);
AKANTU_DEBUG_OUT
();
return
*
(
shapes_derivatives
(
type
,
ghost_type
)[
id
]);
}
#if defined(AKANTU_STRUCTURAL_MECHANICS)
/* -------------------------------------------------------------------------- */
template
<>
template
<
ElementType
type
>
void
ShapeLinked
<
_ek_structural
>::
precomputeShapesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
// Real * coord = mesh.getNodes().storage();
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
UInt
nb_points
=
integration_points
(
type
,
ghost_type
).
cols
();
UInt
size_of_shapes
=
ElementClass
<
type
>::
getShapeSize
();
std
::
string
ghost
=
""
;
if
(
ghost_type
==
_ghost
)
{
ghost
=
"ghost_"
;
}
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
nb_shape_functions
=
ElementClass
<
type
,
_ek_structural
>::
getNbShapeFunctions
();
Array
<
Real
>
**
shapes_tmp
=
new
Array
<
Real
>
*
[
nb_shape_functions
];
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
);
for
(
UInt
s
=
0
;
s
<
nb_shape_functions
;
++
s
)
{
std
::
stringstream
sstr_shapes
;
sstr_shapes
<<
id
<<
":"
<<
ghost
<<
"shapes:"
<<
type
<<
":"
<<
s
;
shapes_tmp
[
s
]
=
&
(
alloc
<
Real
>
(
sstr_shapes
.
str
(),
nb_element
*
nb_points
,
size_of_shapes
));
Array
<
Real
>::
matrix_iterator
x_it
=
x_el
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
shapes_it
=
shapes_tmp
[
s
]
->
begin_reinterpret
(
size_of_shapes
,
nb_points
,
nb_element
);
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
shapes_it
,
++
x_it
)
{
Matrix
<
Real
>
&
X
=
*
x_it
;
Matrix
<
Real
>
&
N
=
*
shapes_it
;
ElementClass
<
type
>::
computeShapes
(
natural_coords
,
N
,
X
,
s
);
}
}
shapes
(
type
,
ghost_type
)
=
shapes_tmp
;
AKANTU_DEBUG_OUT
();
}
#endif
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLinked
<
kind
>::
precomputeShapeDerivativesOnIntegrationPoints
(
const
Array
<
Real
>
&
nodes
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_IN
();
// Real * coord = mesh.getNodes().storage();
UInt
spatial_dimension
=
mesh
.
getSpatialDimension
();
UInt
natural_spatial_dimension
=
ElementClass
<
type
>::
getNaturalSpaceDimension
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
size_of_shapesd
=
ElementClass
<
type
>::
getShapeDerivativesSize
();
Matrix
<
Real
>
&
natural_coords
=
integration_points
(
type
,
ghost_type
);
UInt
nb_points
=
natural_coords
.
cols
();
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
std
::
string
ghost
=
""
;
if
(
ghost_type
==
_ghost
)
{
ghost
=
"ghost_"
;
}
Array
<
Real
>
x_el
(
0
,
spatial_dimension
*
nb_nodes_per_element
);
FEEngine
::
extractNodalToElementField
(
mesh
,
nodes
,
x_el
,
type
,
ghost_type
);
UInt
nb_shape_functions
=
ElementClass
<
type
>::
getNbShapeDerivatives
();
Array
<
Real
>
**
shapes_derivatives_tmp
=
new
Array
<
Real
>
*
[
nb_shape_functions
];
for
(
UInt
s
=
0
;
s
<
nb_shape_functions
;
++
s
)
{
std
::
stringstream
sstr_shapesd
;
sstr_shapesd
<<
id
<<
":"
<<
ghost
<<
"shapes_derivatives:"
<<
type
<<
":"
<<
s
;
shapes_derivatives_tmp
[
s
]
=
&
(
alloc
<
Real
>
(
sstr_shapesd
.
str
(),
nb_element
*
nb_points
,
size_of_shapesd
));
Real
*
shapesd_val
=
shapes_derivatives_tmp
[
s
]
->
storage
();
Array
<
Real
>::
matrix_iterator
x_it
=
x_el
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
for
(
UInt
elem
=
0
;
elem
<
nb_element
;
++
elem
,
++
x_it
)
{
// compute shape derivatives
Matrix
<
Real
>
&
X
=
*
x_it
;
Tensor3
<
Real
>
B
(
shapesd_val
,
natural_spatial_dimension
,
nb_nodes_per_element
,
nb_points
);
ElementClass
<
type
>::
computeShapeDerivatives
(
natural_coords
,
B
,
X
,
s
);
shapesd_val
+=
size_of_shapesd
*
nb_points
;
}
}
shapes_derivatives
(
type
,
ghost_type
)
=
shapes_derivatives_tmp
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLinked
<
kind
>::
extractNodalToElementField
(
const
Array
<
Real
>
&
nodal_f
,
Array
<
Real
>
&
elemental_f
,
UInt
num_degre_of_freedom_to_extract
,
const
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
)
const
{
AKANTU_DEBUG_IN
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
nb_degree_of_freedom
=
nodal_f
.
getNbComponent
();
UInt
nb_element
=
mesh
.
getNbElement
(
type
,
ghost_type
);
UInt
*
conn_val
=
mesh
.
getConnectivity
(
type
,
ghost_type
).
storage
();
if
(
filter_elements
!=
empty_filter
)
{
nb_element
=
filter_elements
.
getSize
();
}
elemental_f
.
resize
(
nb_element
);
Real
*
nodal_f_val
=
nodal_f
.
storage
();
Real
*
f_val
=
elemental_f
.
storage
();
UInt
*
el_conn
;
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
)
{
if
(
filter_elements
!=
empty_filter
)
el_conn
=
conn_val
+
filter_elements
(
el
)
*
nb_nodes_per_element
;
else
el_conn
=
conn_val
+
el
*
nb_nodes_per_element
;
for
(
UInt
n
=
0
;
n
<
nb_nodes_per_element
;
++
n
)
{
UInt
node
=
*
(
el_conn
+
n
);
*
f_val
=
nodal_f_val
[
node
*
nb_degree_of_freedom
+
num_degre_of_freedom_to_extract
];
f_val
+=
1
;
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLinked
<
kind
>::
interpolateOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_uq
,
__attribute__
((
unused
))
UInt
nb_degree_of_freedom
,
const
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
,
bool
accumulate
,
UInt
id_shape
,
UInt
num_degre_of_freedom_to_interpolate
,
__attribute__
((
unused
))
UInt
num_degre_of_freedom_interpolated
)
const
{
AKANTU_DEBUG_IN
();
Array
<
Real
>
*
shapes_loc
=
shapes
(
type
,
ghost_type
)[
id_shape
];
AKANTU_DEBUG_ASSERT
(
shapes_loc
!=
NULL
,
"No shapes for the type "
<<
type
);
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
Array
<
Real
>
u_el
(
0
,
nb_nodes_per_element
);
extractNodalToElementField
<
type
>
(
in_u
,
u_el
,
num_degre_of_freedom_to_interpolate
,
ghost_type
,
filter_elements
);
if
(
!
accumulate
)
out_uq
.
clear
();
UInt
nb_points
=
integration_points
(
type
,
ghost_type
).
cols
()
*
u_el
.
getSize
();
Array
<
Real
>
uq
(
nb_points
,
1
,
0.
);
this
->
template
interpolateElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
uq
,
ghost_type
,
*
shapes_loc
,
filter_elements
);
for
(
UInt
q
=
0
;
q
<
nb_points
;
++
q
)
{
out_uq
(
q
,
num_degre_of_freedom_to_interpolate
)
+=
uq
(
q
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
ElementKind
kind
>
template
<
ElementType
type
>
void
ShapeLinked
<
kind
>::
gradientOnIntegrationPoints
(
const
Array
<
Real
>
&
in_u
,
Array
<
Real
>
&
out_nablauq
,
UInt
nb_degree_of_freedom
,
const
GhostType
&
ghost_type
,
const
Array
<
UInt
>
&
filter_elements
,
bool
accumulate
,
UInt
id_shape
,
UInt
num_degre_of_freedom_to_interpolate
,
UInt
num_degre_of_freedom_interpolated
)
const
{
AKANTU_DEBUG_IN
();
Array
<
Real
>
*
shapesd_loc
=
shapes_derivatives
(
type
,
ghost_type
)[
id_shape
];
AKANTU_DEBUG_ASSERT
(
shapesd_loc
!=
NULL
,
"No shapes for the type "
<<
type
);
UInt
nb_nodes_per_element
=
ElementClass
<
type
>::
getNbNodesPerElement
();
Array
<
Real
>
u_el
(
0
,
nb_nodes_per_element
);
extractNodalToElementField
<
type
>
(
in_u
,
u_el
,
num_degre_of_freedom_to_interpolate
,
ghost_type
,
filter_elements
);
UInt
nb_points
=
integration_points
(
type
,
ghost_type
).
cols
()
*
u_el
.
getSize
();
UInt
element_dimension
=
ElementClass
<
type
>::
getSpatialDimension
();
Array
<
Real
>
nablauq
(
nb_points
,
element_dimension
,
0.
);
if
(
!
accumulate
)
out_nablauq
.
clear
();
this
->
template
gradientElementalFieldOnIntegrationPoints
<
type
>
(
u_el
,
nablauq
,
ghost_type
,
*
shapesd_loc
,
filter_elements
);
Array
<
Real
>::
matrix_iterator
nabla_u_it
=
nablauq
.
begin
(
1
,
element_dimension
);
Array
<
Real
>::
matrix_iterator
out_nabla_u_it
=
out_nablauq
.
begin
(
nb_degree_of_freedom
,
element_dimension
);
for
(
UInt
q
=
0
;
q
<
nb_points
;
++
q
,
++
nabla_u_it
,
++
out_nabla_u_it
)
{
for
(
UInt
s
=
0
;
s
<
element_dimension
;
++
s
)
{
(
*
out_nabla_u_it
)(
num_degre_of_freedom_to_interpolate
,
s
)
+=
(
*
nabla_u_it
)(
0
,
s
);
}
}
AKANTU_DEBUG_OUT
();
}
Event Timeline
Log In to Comment