Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92114169
resolution_penalty_quadratic.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Sun, Nov 17, 11:49
Size
30 KB
Mime Type
text/x-c
Expires
Tue, Nov 19, 11:49 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22377865
Attached To
rAKA akantu
resolution_penalty_quadratic.cc
View Options
/**
* @file resolution_penalty_quadratic.cc
*
* @author Mohit Pundir <mohit.pundir@epfl.ch>
*
* @date creation: Sun Aug 2 2020
* @date last modification: Sun Aug 2 2020
*
* @brief Specialization of the resolution class for the quadratic penalty
* method
*
* @section LICENSE
*
* Copyright (©) 2010-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "resolution_penalty_quadratic.hh"
#include "element_class_helper.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
/* -------------------------------------------------------------------------- */
ResolutionPenaltyQuadratic
::
ResolutionPenaltyQuadratic
(
ContactMechanicsModel
&
model
,
const
ID
&
id
)
:
Parent
(
model
,
id
)
{
AKANTU_DEBUG_IN
();
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
initialize
()
{}
/* -------------------------------------------------------------------------- */
Real
ResolutionPenaltyQuadratic
::
computeNormalTraction
(
Real
&
gap
)
{
return
epsilon_n
*
(
macaulay
(
gap
)
*
macaulay
(
gap
)
+
macaulay
(
gap
));
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeNormalForce
(
const
ContactElement
&
element
,
Vector
<
Real
>
&
force
)
{
force
.
zero
();
auto
&
gaps
=
model
.
getGaps
();
auto
&
projections
=
model
.
getProjections
();
auto
&
normals
=
model
.
getNormals
();
auto
surface_dimension
=
spatial_dimension
-
1
;
Real
gap
(
gaps
.
begin
()[
element
.
slave
]);
Vector
<
Real
>
normal
(
normals
.
begin
(
spatial_dimension
)[
element
.
slave
]);
Vector
<
Real
>
projection
(
projections
.
begin
(
surface_dimension
)[
element
.
slave
]);
auto
&
nodal_area
=
const_cast
<
Array
<
Real
>
&>
(
model
.
getNodalArea
());
// compute normal traction
Real
p_n
=
computeNormalTraction
(
gap
);
p_n
*=
nodal_area
[
element
.
slave
];
UInt
nb_nodes_per_contact
=
element
.
getNbNodes
();
Matrix
<
Real
>
shape_matric
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
ResolutionUtils
::
computeShapeFunctionMatric
(
element
,
projection
,
shape_matric
);
force
.
mul
<
true
>
(
shape_matric
,
normal
,
p_n
);
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeTangentialForce
(
const
ContactElement
&
element
,
Vector
<
Real
>
&
force
)
{
if
(
mu
==
0
)
return
;
force
.
zero
();
UInt
surface_dimension
=
spatial_dimension
-
1
;
// compute tangents
auto
&
projections
=
model
.
getProjections
();
Vector
<
Real
>
projection
(
projections
.
begin
(
surface_dimension
)[
element
.
slave
]);
auto
&
normals
=
model
.
getNormals
();
Vector
<
Real
>
normal
(
normals
.
begin
(
spatial_dimension
)[
element
.
slave
]);
auto
&
tangents
=
model
.
getTangents
();
Matrix
<
Real
>
covariant_basis
(
tangents
.
begin
(
surface_dimension
,
spatial_dimension
)[
element
.
slave
]);
// check for no-contact to contact condition
// need a better way to check if new node added is not presnt in the
// previous master elemets
auto
&
previous_master_elements
=
model
.
getPreviousMasterElements
();
if
(
element
.
slave
>=
previous_master_elements
.
size
())
return
;
auto
&
previous_element
=
previous_master_elements
[
element
.
slave
];
if
(
previous_element
.
type
==
_not_defined
)
return
;
// compute tangential traction using return map algorithm
auto
&
tangential_tractions
=
model
.
getTangentialTractions
();
Vector
<
Real
>
tangential_traction
(
tangential_tractions
.
begin
(
surface_dimension
)[
element
.
slave
]);
this
->
computeTangentialTraction
(
element
,
covariant_basis
,
tangential_traction
);
UInt
nb_nodes_per_contact
=
element
.
getNbNodes
();
Matrix
<
Real
>
shape_matric
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
ResolutionUtils
::
computeShapeFunctionMatric
(
element
,
projection
,
shape_matric
);
auto
contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
covariant_basis
);
auto
&
nodal_area
=
const_cast
<
Array
<
Real
>
&>
(
model
.
getNodalArea
());
for
(
auto
&&
values1
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
alpha
=
std
::
get
<
0
>
(
values1
);
auto
&
tangent_alpha
=
std
::
get
<
1
>
(
values1
);
for
(
auto
&&
values2
:
enumerate
(
tangential_traction
))
{
auto
&
beta
=
std
::
get
<
0
>
(
values2
);
auto
&
traction_beta
=
std
::
get
<
1
>
(
values2
);
Vector
<
Real
>
tmp
(
force
.
size
());
tmp
.
mul
<
true
>
(
shape_matric
,
tangent_alpha
,
traction_beta
);
tmp
*=
contravariant_metric_tensor
(
alpha
,
beta
)
*
nodal_area
[
element
.
slave
];
force
+=
tmp
;
}
}
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeTangentialTraction
(
const
ContactElement
&
element
,
const
Matrix
<
Real
>
&
covariant_basis
,
Vector
<
Real
>
&
traction_tangential
)
{
UInt
surface_dimension
=
spatial_dimension
-
1
;
auto
&
gaps
=
model
.
getGaps
();
auto
&
gap
=
gaps
.
begin
()[
element
.
slave
];
// Return map algorithm is employed
// compute trial traction
Vector
<
Real
>
traction_trial
(
surface_dimension
);
this
->
computeTrialTangentialTraction
(
element
,
covariant_basis
,
traction_trial
);
// compute norm of trial traction
Real
traction_trial_norm
=
0
;
auto
contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
covariant_basis
);
for
(
auto
i
:
arange
(
surface_dimension
))
{
for
(
auto
j
:
arange
(
surface_dimension
))
{
traction_trial_norm
+=
traction_trial
[
i
]
*
traction_trial
[
j
]
*
contravariant_metric_tensor
(
i
,
j
);
}
}
traction_trial_norm
=
sqrt
(
traction_trial_norm
);
// check stick or slip condition
auto
&
contact_state
=
model
.
getContactState
();
auto
&
state
=
contact_state
.
begin
()[
element
.
slave
];
Real
p_n
=
computeNormalTraction
(
gap
);
bool
stick
=
(
traction_trial_norm
<=
mu
*
p_n
)
?
true
:
false
;
if
(
stick
)
{
state
=
ContactState
::
_stick
;
computeStickTangentialTraction
(
element
,
traction_trial
,
traction_tangential
);
}
else
{
state
=
ContactState
::
_slip
;
computeSlipTangentialTraction
(
element
,
covariant_basis
,
traction_trial
,
traction_tangential
);
}
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeTrialTangentialTraction
(
const
ContactElement
&
element
,
const
Matrix
<
Real
>
&
covariant_basis
,
Vector
<
Real
>
&
traction
)
{
UInt
surface_dimension
=
spatial_dimension
-
1
;
auto
&
projections
=
model
.
getProjections
();
Vector
<
Real
>
current_projection
(
projections
.
begin
(
surface_dimension
)[
element
.
slave
]);
auto
&
previous_projections
=
model
.
getPreviousProjections
();
Vector
<
Real
>
previous_projection
(
previous_projections
.
begin
(
surface_dimension
)[
element
.
slave
]);
// method from Laursen et. al.
/*auto covariant_metric_tensor =
GeometryUtils::covariantMetricTensor(covariant_basis); auto
increment_projection = current_projection - previous_projection;
traction.mul<false>(covariant_metric_tensor, increment_projection, epsilon_t);
auto & previous_tangential_tractions = model.getPreviousTangentialTractions();
Vector<Real>
previous_traction(previous_tangential_tractions.begin(surface_dimension)[element.slave]);
traction = previous_traction + traction;*/
// method from Schweizerhof
auto
covariant_metric_tensor
=
GeometryUtils
::
covariantMetricTensor
(
covariant_basis
);
auto
&
previous_tangential_tractions
=
model
.
getPreviousTangentialTractions
();
Vector
<
Real
>
previous_traction
(
previous_tangential_tractions
.
begin
(
surface_dimension
)[
element
.
slave
]);
auto
&
previous_tangents
=
model
.
getPreviousTangents
();
Matrix
<
Real
>
previous_covariant_basis
(
previous_tangents
.
begin
(
surface_dimension
,
spatial_dimension
)[
element
.
slave
]);
auto
previous_contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
previous_covariant_basis
);
auto
current_tangent
=
covariant_basis
.
transpose
();
auto
previous_tangent
=
previous_covariant_basis
.
transpose
();
for
(
auto
alpha
:
arange
(
surface_dimension
))
{
Vector
<
Real
>
tangent_alpha
(
current_tangent
(
alpha
));
for
(
auto
gamma
:
arange
(
surface_dimension
))
{
for
(
auto
beta
:
arange
(
surface_dimension
))
{
Vector
<
Real
>
tangent_beta
(
previous_tangent
(
beta
));
auto
t_alpha_t_beta
=
tangent_beta
.
dot
(
tangent_alpha
);
traction
[
alpha
]
+=
previous_traction
[
gamma
]
*
previous_contravariant_metric_tensor
(
gamma
,
beta
)
*
t_alpha_t_beta
;
}
}
}
auto
&
previous_master_elements
=
model
.
getPreviousMasterElements
();
auto
&
previous_element
=
previous_master_elements
[
element
.
slave
];
Vector
<
Real
>
previous_real_projection
(
spatial_dimension
);
GeometryUtils
::
realProjection
(
model
.
getMesh
(),
model
.
getContactDetector
().
getPositions
(),
previous_element
,
previous_projection
,
previous_real_projection
);
Vector
<
Real
>
current_real_projection
(
spatial_dimension
);
GeometryUtils
::
realProjection
(
model
.
getMesh
(),
model
.
getContactDetector
().
getPositions
(),
element
.
master
,
current_projection
,
current_real_projection
);
auto
increment_real
=
current_real_projection
-
previous_real_projection
;
Vector
<
Real
>
increment_xi
(
surface_dimension
);
auto
contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
covariant_basis
);
// increment in natural coordinate
for
(
auto
beta
:
arange
(
surface_dimension
))
{
for
(
auto
gamma
:
arange
(
surface_dimension
))
{
auto
temp
=
increment_real
.
dot
(
current_tangent
(
gamma
));
temp
*=
contravariant_metric_tensor
(
beta
,
gamma
);
increment_xi
[
beta
]
+=
temp
;
}
}
Vector
<
Real
>
temp
(
surface_dimension
);
temp
.
mul
<
false
>
(
covariant_metric_tensor
,
increment_xi
,
epsilon_t
);
traction
-=
temp
;
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeStickTangentialTraction
(
const
ContactElement
&
/*element*/
,
Vector
<
Real
>
&
traction_trial
,
Vector
<
Real
>
&
traction_tangential
)
{
traction_tangential
=
traction_trial
;
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeSlipTangentialTraction
(
const
ContactElement
&
element
,
const
Matrix
<
Real
>
&
covariant_basis
,
Vector
<
Real
>
&
traction_trial
,
Vector
<
Real
>
&
traction_tangential
)
{
UInt
surface_dimension
=
spatial_dimension
-
1
;
auto
&
gaps
=
model
.
getGaps
();
auto
&
gap
=
gaps
.
begin
()[
element
.
slave
];
// compute norm of trial traction
Real
traction_trial_norm
=
0
;
auto
contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
covariant_basis
);
for
(
auto
i
:
arange
(
surface_dimension
))
{
for
(
auto
j
:
arange
(
surface_dimension
))
{
traction_trial_norm
+=
traction_trial
[
i
]
*
traction_trial
[
j
]
*
contravariant_metric_tensor
(
i
,
j
);
}
}
traction_trial_norm
=
sqrt
(
traction_trial_norm
);
auto
slip_direction
=
traction_trial
;
slip_direction
/=
traction_trial_norm
;
Real
p_n
=
computeNormalTraction
(
gap
);
traction_tangential
=
slip_direction
;
traction_tangential
*=
mu
*
p_n
;
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeNormalModuli
(
const
ContactElement
&
element
,
Matrix
<
Real
>
&
stiffness
)
{
auto
surface_dimension
=
spatial_dimension
-
1
;
auto
&
gaps
=
model
.
getGaps
();
Real
gap
(
gaps
.
begin
()[
element
.
slave
]);
auto
&
projections
=
model
.
getProjections
();
Vector
<
Real
>
projection
(
projections
.
begin
(
surface_dimension
)[
element
.
slave
]);
auto
&
nodal_areas
=
model
.
getNodalArea
();
auto
&
nodal_area
=
nodal_areas
.
begin
()[
element
.
slave
];
auto
&
normals
=
model
.
getNormals
();
Vector
<
Real
>
normal
(
normals
.
begin
(
spatial_dimension
)[
element
.
slave
]);
// method from Schweizerhof and A. Konyukhov, K. Schweizerhof
// DOI 10.1007/s00466-004-0616-7 and DOI 10.1007/s00466-003-0515-3
// construct A matrix
const
ElementType
&
type
=
element
.
master
.
type
;
auto
&&
shapes
=
ElementClassHelper
<
_ek_regular
>::
getN
(
projection
,
type
);
UInt
nb_nodes_per_contact
=
element
.
getNbNodes
();
Matrix
<
Real
>
A
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
for
(
auto
i
:
arange
(
nb_nodes_per_contact
))
{
for
(
auto
j
:
arange
(
spatial_dimension
))
{
if
(
i
==
0
)
{
A
(
j
,
i
*
spatial_dimension
+
j
)
=
1
;
continue
;
}
A
(
j
,
i
*
spatial_dimension
+
j
)
=
-
shapes
[
i
-
1
];
}
}
// construct the main part of normal matrix
Matrix
<
Real
>
k_main
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
Matrix
<
Real
>
n_outer_n
(
spatial_dimension
,
spatial_dimension
);
Matrix
<
Real
>
mat_n
(
normal
.
storage
(),
normal
.
size
(),
1.
);
n_outer_n
.
mul
<
false
,
true
>
(
mat_n
,
mat_n
);
Matrix
<
Real
>
tmp
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
tmp
.
mul
<
false
,
false
>
(
n_outer_n
,
A
);
k_main
.
mul
<
true
,
false
>
(
A
,
tmp
);
k_main
*=
epsilon_n
*
heaviside
(
gap
)
*
(
2
*
gap
+
1
)
*
nodal_area
;
// construct the rotational part of the normal matrix
auto
&
tangents
=
model
.
getTangents
();
Matrix
<
Real
>
covariant_basis
(
tangents
.
begin
(
surface_dimension
,
spatial_dimension
)[
element
.
slave
]);
auto
contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
covariant_basis
);
// computing shape derivatives
auto
&&
shape_derivatives
=
ElementClassHelper
<
_ek_regular
>::
getDNDS
(
projection
,
type
);
// consists of 2 rotational parts
Matrix
<
Real
>
k_rot1
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
Matrix
<
Real
>
k_rot2
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
Matrix
<
Real
>
Aj
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
auto
construct_Aj
=
[
&
](
auto
&&
dnds
)
{
for
(
auto
i
:
arange
(
nb_nodes_per_contact
))
{
for
(
auto
j
:
arange
(
spatial_dimension
))
{
if
(
i
==
0
)
{
Aj
(
j
,
i
*
spatial_dimension
+
j
)
=
0
;
continue
;
}
Aj
(
j
,
i
*
spatial_dimension
+
j
)
=
dnds
(
i
-
1
);
}
}
};
for
(
auto
&&
values1
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
alpha
=
std
::
get
<
0
>
(
values1
);
auto
&
tangent
=
std
::
get
<
1
>
(
values1
);
Matrix
<
Real
>
n_outer_t
(
spatial_dimension
,
spatial_dimension
);
Matrix
<
Real
>
mat_t
(
tangent
.
storage
(),
tangent
.
size
(),
1.
);
n_outer_t
.
mul
<
false
,
true
>
(
mat_n
,
mat_t
);
Matrix
<
Real
>
t_outer_n
(
spatial_dimension
,
spatial_dimension
);
t_outer_n
.
mul
<
false
,
true
>
(
mat_t
,
mat_n
);
for
(
auto
&&
values2
:
enumerate
(
shape_derivatives
.
transpose
()))
{
auto
&
beta
=
std
::
get
<
0
>
(
values2
);
auto
&
dnds
=
std
::
get
<
1
>
(
values2
);
// construct Aj from shape function wrt to jth natural
// coordinate
construct_Aj
(
dnds
);
Matrix
<
Real
>
tmp
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
Matrix
<
Real
>
tmp1
(
nb_nodes_per_contact
*
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
tmp
.
mul
<
false
,
false
>
(
n_outer_t
,
A
);
tmp1
.
mul
<
true
,
false
>
(
Aj
,
tmp
);
tmp1
*=
contravariant_metric_tensor
(
alpha
,
beta
);
k_rot1
+=
tmp1
;
tmp
.
mul
<
false
,
false
>
(
t_outer_n
,
Aj
);
tmp1
.
mul
<
true
,
false
>
(
A
,
tmp
);
tmp1
*=
contravariant_metric_tensor
(
alpha
,
beta
);
k_rot2
+=
tmp1
;
}
}
k_rot1
*=
-
epsilon_n
*
heaviside
(
gap
)
*
(
gap
*
gap
+
gap
)
*
nodal_area
;
k_rot2
*=
-
epsilon_n
*
heaviside
(
gap
)
*
(
gap
*
gap
+
gap
)
*
nodal_area
;
stiffness
+=
k_main
+
k_rot1
+
k_rot2
;
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeTangentialModuli
(
const
ContactElement
&
element
,
Matrix
<
Real
>
&
stiffness
)
{
if
(
mu
==
0
)
{
return
;
}
stiffness
.
zero
();
auto
&
contact_state
=
model
.
getContactState
();
auto
state
=
contact_state
.
begin
()[
element
.
slave
];
switch
(
state
)
{
case
ContactState
::
_stick:
{
computeStickModuli
(
element
,
stiffness
);
break
;
}
case
ContactState
::
_slip:
{
computeSlipModuli
(
element
,
stiffness
);
break
;
}
default
:
break
;
}
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeStickModuli
(
const
ContactElement
&
element
,
Matrix
<
Real
>
&
stiffness
)
{
auto
surface_dimension
=
spatial_dimension
-
1
;
auto
&
projections
=
model
.
getProjections
();
Vector
<
Real
>
projection
(
projections
.
begin
(
surface_dimension
)[
element
.
slave
]);
auto
&
nodal_areas
=
model
.
getNodalArea
();
auto
&
nodal_area
=
nodal_areas
.
begin
()[
element
.
slave
];
// method from Schweizerhof and A. Konyukhov, K. Schweizerhof
// DOI 10.1007/s00466-004-0616-7 and DOI 10.1007/s00466-003-0515-3
// construct A matrix
const
ElementType
&
type
=
element
.
master
.
type
;
auto
&&
shapes
=
ElementClassHelper
<
_ek_regular
>::
getN
(
projection
,
type
);
UInt
nb_nodes_per_contact
=
element
.
getNbNodes
();
Matrix
<
Real
>
A
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
for
(
auto
i
:
arange
(
nb_nodes_per_contact
))
{
for
(
auto
j
:
arange
(
spatial_dimension
))
{
if
(
i
==
0
)
{
A
(
j
,
i
*
spatial_dimension
+
j
)
=
1
;
continue
;
}
A
(
j
,
i
*
spatial_dimension
+
j
)
=
-
shapes
[
i
-
1
];
}
}
// computing shape derivatives
auto
&&
shape_derivatives
=
ElementClassHelper
<
_ek_regular
>::
getDNDS
(
projection
,
type
);
Matrix
<
Real
>
Aj
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
auto
construct_Aj
=
[
&
](
auto
&&
dnds
)
{
for
(
auto
i
:
arange
(
nb_nodes_per_contact
))
{
for
(
auto
j
:
arange
(
spatial_dimension
))
{
if
(
i
==
0
)
{
Aj
(
j
,
i
*
spatial_dimension
+
j
)
=
0
;
continue
;
}
Aj
(
j
,
i
*
spatial_dimension
+
j
)
=
dnds
(
i
-
1
);
}
}
};
// tangents should have been calculated in normal modulii
auto
&
tangents
=
model
.
getTangents
();
Matrix
<
Real
>
covariant_basis
(
tangents
.
begin
(
surface_dimension
,
spatial_dimension
)[
element
.
slave
]);
auto
contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
covariant_basis
);
// construct 1st part of the stick modulii
Matrix
<
Real
>
k_main
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
for
(
auto
&&
values1
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
alpha
=
std
::
get
<
0
>
(
values1
);
auto
&
tangent_alpha
=
std
::
get
<
1
>
(
values1
);
Matrix
<
Real
>
t_outer_t
(
spatial_dimension
,
spatial_dimension
);
Matrix
<
Real
>
mat_t_alpha
(
tangent_alpha
.
storage
(),
tangent_alpha
.
size
(),
1.
);
for
(
auto
&&
values2
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
beta
=
std
::
get
<
0
>
(
values2
);
auto
&
tangent_beta
=
std
::
get
<
1
>
(
values2
);
Matrix
<
Real
>
mat_t_beta
(
tangent_beta
.
storage
(),
tangent_beta
.
size
(),
1.
);
t_outer_t
.
mul
<
false
,
true
>
(
mat_t_alpha
,
mat_t_beta
);
Matrix
<
Real
>
tmp
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
Matrix
<
Real
>
tmp1
(
nb_nodes_per_contact
*
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
tmp
.
mul
<
false
,
false
>
(
t_outer_t
,
A
);
tmp1
.
mul
<
true
,
false
>
(
A
,
tmp
);
tmp1
*=
contravariant_metric_tensor
(
alpha
,
beta
);
k_main
+=
tmp1
;
}
}
k_main
*=
-
epsilon_t
;
// construct 2nd part of the stick modulii
auto
&
tangential_tractions
=
model
.
getTangentialTractions
();
Vector
<
Real
>
tangential_traction
(
tangential_tractions
.
begin
(
surface_dimension
)[
element
.
slave
]);
Matrix
<
Real
>
k_second
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
for
(
auto
alpha
:
arange
(
surface_dimension
))
{
Matrix
<
Real
>
k_sum
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
for
(
auto
&&
values1
:
enumerate
(
shape_derivatives
.
transpose
()))
{
auto
&
beta
=
std
::
get
<
0
>
(
values1
);
auto
&
dnds
=
std
::
get
<
1
>
(
values1
);
// construct Aj from shape function wrt to jth natural
// coordinate
construct_Aj
(
dnds
);
for
(
auto
&&
values2
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
gamma
=
std
::
get
<
0
>
(
values2
);
auto
&
tangent_gamma
=
std
::
get
<
1
>
(
values2
);
Matrix
<
Real
>
t_outer_t
(
spatial_dimension
,
spatial_dimension
);
Matrix
<
Real
>
mat_t_gamma
(
tangent_gamma
.
storage
(),
tangent_gamma
.
size
(),
1.
);
for
(
auto
&&
values3
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
theta
=
std
::
get
<
0
>
(
values3
);
auto
&
tangent_theta
=
std
::
get
<
1
>
(
values3
);
Matrix
<
Real
>
mat_t_theta
(
tangent_theta
.
storage
(),
tangent_theta
.
size
(),
1.
);
t_outer_t
.
mul
<
false
,
true
>
(
mat_t_gamma
,
mat_t_theta
);
Matrix
<
Real
>
tmp
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
Matrix
<
Real
>
tmp1
(
nb_nodes_per_contact
*
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
tmp
.
mul
<
false
,
false
>
(
t_outer_t
,
Aj
);
tmp1
.
mul
<
true
,
false
>
(
A
,
tmp
);
tmp1
*=
contravariant_metric_tensor
(
alpha
,
theta
)
*
contravariant_metric_tensor
(
beta
,
gamma
);
Matrix
<
Real
>
tmp2
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
Matrix
<
Real
>
tmp3
(
nb_nodes_per_contact
*
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
tmp2
.
mul
<
false
,
false
>
(
t_outer_t
,
A
);
tmp3
.
mul
<
true
,
false
>
(
Aj
,
tmp2
);
tmp3
*=
contravariant_metric_tensor
(
alpha
,
gamma
)
*
contravariant_metric_tensor
(
beta
,
theta
);
k_sum
+=
tmp1
+
tmp3
;
}
}
}
k_second
+=
tangential_traction
[
alpha
]
*
k_sum
;
}
stiffness
+=
k_main
*
nodal_area
-
k_second
*
nodal_area
;
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
computeSlipModuli
(
const
ContactElement
&
element
,
Matrix
<
Real
>
&
stiffness
)
{
auto
surface_dimension
=
spatial_dimension
-
1
;
auto
&
gaps
=
model
.
getGaps
();
Real
gap
(
gaps
.
begin
()[
element
.
slave
]);
auto
&
nodal_areas
=
model
.
getNodalArea
();
auto
&
nodal_area
=
nodal_areas
.
begin
()[
element
.
slave
];
// compute normal traction
Real
p_n
=
computeNormalTraction
(
gap
);
auto
&
projections
=
model
.
getProjections
();
Vector
<
Real
>
projection
(
projections
.
begin
(
surface_dimension
)[
element
.
slave
]);
auto
&
normals
=
model
.
getNormals
();
Vector
<
Real
>
normal
(
normals
.
begin
(
spatial_dimension
)[
element
.
slave
]);
// restructure normal as a matrix for an outer product
Matrix
<
Real
>
mat_n
(
normal
.
storage
(),
normal
.
size
(),
1.
);
// method from Schweizerhof and A. Konyukhov, K. Schweizerhof
// DOI 10.1007/s00466-004-0616-7 and DOI 10.1007/s00466-003-0515-3
// construct A matrix
const
ElementType
&
type
=
element
.
master
.
type
;
auto
&&
shapes
=
ElementClassHelper
<
_ek_regular
>::
getN
(
projection
,
type
);
UInt
nb_nodes_per_contact
=
element
.
getNbNodes
();
Matrix
<
Real
>
A
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
for
(
auto
i
:
arange
(
nb_nodes_per_contact
))
{
for
(
auto
j
:
arange
(
spatial_dimension
))
{
if
(
i
==
0
)
{
A
(
j
,
i
*
spatial_dimension
+
j
)
=
1
;
continue
;
}
A
(
j
,
i
*
spatial_dimension
+
j
)
=
-
shapes
[
i
-
1
];
}
}
// computing shape derivatives
auto
&&
shape_derivatives
=
ElementClassHelper
<
_ek_regular
>::
getDNDS
(
projection
,
type
);
Matrix
<
Real
>
Aj
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
auto
construct_Aj
=
[
&
](
auto
&&
dnds
)
{
for
(
auto
i
:
arange
(
nb_nodes_per_contact
))
{
for
(
auto
j
:
arange
(
spatial_dimension
))
{
if
(
i
==
0
)
{
Aj
(
j
,
i
*
spatial_dimension
+
j
)
=
0
;
continue
;
}
Aj
(
j
,
i
*
spatial_dimension
+
j
)
=
dnds
(
i
-
1
);
}
}
};
// tangents should have been calculated in normal modulii
auto
&
tangents
=
model
.
getTangents
();
Matrix
<
Real
>
covariant_basis
(
tangents
.
begin
(
surface_dimension
,
spatial_dimension
)[
element
.
slave
]);
auto
&
tangential_tractions
=
model
.
getTangentialTractions
();
Vector
<
Real
>
tangential_traction
(
tangential_tractions
.
begin
(
surface_dimension
)[
element
.
slave
]);
// compute norm of trial traction
Real
traction_norm
=
0
;
auto
contravariant_metric_tensor
=
GeometryUtils
::
contravariantMetricTensor
(
covariant_basis
);
for
(
auto
i
:
arange
(
surface_dimension
))
{
for
(
auto
j
:
arange
(
surface_dimension
))
{
traction_norm
+=
tangential_traction
[
i
]
*
tangential_traction
[
j
]
*
contravariant_metric_tensor
(
i
,
j
);
}
}
traction_norm
=
sqrt
(
traction_norm
);
// construct four parts of stick modulii (eq 107,107a-c)
Matrix
<
Real
>
k_first
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
Matrix
<
Real
>
k_second
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
Matrix
<
Real
>
k_third
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
Matrix
<
Real
>
k_fourth
(
nb_nodes_per_contact
*
spatial_dimension
,
nb_nodes_per_contact
*
spatial_dimension
);
for
(
auto
&&
values1
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
alpha
=
std
::
get
<
0
>
(
values1
);
auto
&
tangent_alpha
=
std
::
get
<
1
>
(
values1
);
Matrix
<
Real
>
mat_t_alpha
(
tangent_alpha
.
storage
(),
tangent_alpha
.
size
(),
1.
);
Matrix
<
Real
>
t_outer_n
(
spatial_dimension
,
spatial_dimension
);
Matrix
<
Real
>
t_outer_t
(
spatial_dimension
,
spatial_dimension
);
for
(
auto
&&
values2
:
zip
(
arange
(
surface_dimension
),
covariant_basis
.
transpose
(),
shape_derivatives
.
transpose
()))
{
auto
&
beta
=
std
::
get
<
0
>
(
values2
);
auto
&
tangent_beta
=
std
::
get
<
1
>
(
values2
);
auto
&
dnds
=
std
::
get
<
2
>
(
values2
);
// construct Aj from shape function wrt to jth natural
// coordinate
construct_Aj
(
dnds
);
// eq 107
Matrix
<
Real
>
mat_t_beta
(
tangent_beta
.
storage
(),
tangent_beta
.
size
(),
1.
);
t_outer_n
.
mul
<
false
,
true
>
(
mat_t_beta
,
mat_n
);
Matrix
<
Real
>
tmp
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
Matrix
<
Real
>
tmp1
(
nb_nodes_per_contact
*
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
tmp
.
mul
<
false
,
false
>
(
t_outer_n
,
A
);
tmp1
.
mul
<
true
,
false
>
(
A
,
tmp
);
tmp1
*=
epsilon_n
*
mu
*
tangential_traction
[
alpha
]
*
contravariant_metric_tensor
(
alpha
,
beta
);
tmp1
/=
traction_norm
;
k_first
+=
tmp1
*
nodal_area
;
// eq 107a
t_outer_t
.
mul
<
false
,
true
>
(
mat_t_alpha
,
mat_t_beta
);
tmp
.
mul
<
false
,
false
>
(
t_outer_t
,
A
);
tmp1
.
mul
<
true
,
false
>
(
A
,
tmp
);
tmp1
*=
epsilon_t
*
mu
*
p_n
*
contravariant_metric_tensor
(
alpha
,
beta
);
tmp1
/=
traction_norm
;
k_second
+=
tmp1
*
nodal_area
;
for
(
auto
&&
values3
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
gamma
=
std
::
get
<
0
>
(
values3
);
auto
&
tangent_gamma
=
std
::
get
<
1
>
(
values3
);
Matrix
<
Real
>
mat_t_gamma
(
tangent_gamma
.
storage
(),
tangent_gamma
.
size
(),
1.
);
for
(
auto
&&
values4
:
enumerate
(
covariant_basis
.
transpose
()))
{
auto
&
theta
=
std
::
get
<
0
>
(
values4
);
auto
&
tangent_theta
=
std
::
get
<
1
>
(
values4
);
Matrix
<
Real
>
mat_t_theta
(
tangent_theta
.
storage
(),
tangent_theta
.
size
(),
1.
);
t_outer_t
.
mul
<
false
,
true
>
(
mat_t_gamma
,
mat_t_theta
);
// eq 107b
tmp
.
mul
<
false
,
false
>
(
t_outer_t
,
A
);
tmp1
.
mul
<
true
,
false
>
(
A
,
tmp
);
tmp1
*=
epsilon_t
*
mu
*
p_n
*
tangential_traction
[
alpha
]
*
tangential_traction
[
beta
];
tmp1
*=
contravariant_metric_tensor
(
alpha
,
gamma
)
*
contravariant_metric_tensor
(
beta
,
theta
);
tmp1
/=
pow
(
traction_norm
,
3
);
k_third
+=
tmp1
*
nodal_area
;
// eq 107c
tmp
.
mul
<
false
,
false
>
(
t_outer_t
,
Aj
);
tmp1
.
mul
<
true
,
false
>
(
A
,
tmp
);
tmp1
*=
contravariant_metric_tensor
(
alpha
,
theta
)
*
contravariant_metric_tensor
(
beta
,
gamma
);
tmp1
*=
mu
*
p_n
*
tangential_traction
[
alpha
];
tmp1
/=
traction_norm
;
Matrix
<
Real
>
tmp2
(
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
Matrix
<
Real
>
tmp3
(
nb_nodes_per_contact
*
spatial_dimension
,
spatial_dimension
*
nb_nodes_per_contact
);
tmp2
.
mul
<
false
,
false
>
(
t_outer_t
,
A
);
tmp3
.
mul
<
true
,
false
>
(
Aj
,
tmp2
);
tmp3
*=
contravariant_metric_tensor
(
alpha
,
gamma
)
*
contravariant_metric_tensor
(
beta
,
theta
);
tmp3
*=
mu
*
p_n
*
tangential_traction
[
alpha
];
tmp3
/=
traction_norm
;
k_fourth
+=
(
tmp1
+
tmp3
)
*
nodal_area
;
}
}
}
}
stiffness
+=
k_third
+
k_fourth
-
k_first
-
k_second
;
}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
beforeSolveStep
()
{}
/* -------------------------------------------------------------------------- */
void
ResolutionPenaltyQuadratic
::
afterSolveStep
(
__attribute__
((
unused
))
bool
converged
)
{}
INSTANTIATE_RESOLUTION
(
penalty_quadratic
,
ResolutionPenaltyQuadratic
);
}
// namespace akantu
Event Timeline
Log In to Comment