Page MenuHomec4science

model.hh
No OneTemporary

File Metadata

Created
Sun, Nov 10, 12:02

model.hh

/**
* @file model.hh
*
* @author Guillaume Anciaux <guillaume.anciaux@epfl.ch>
* @author David Simon Kammer <david.kammer@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Fri Jun 18 2010
* @date last modification: Fri Oct 16 2015
*
* @brief Interface of a model
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014, 2015 EPFL (Ecole Polytechnique Fédérale de
* Lausanne) Laboratory (LSMS - Laboratoire de Simulation en Mécanique des
* Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_common.hh"
#include "aka_memory.hh"
#include "aka_named_argument.hh"
#include "fe_engine.hh"
#include "mesh.hh"
#include "model_options.hh"
#include "model_solver.hh"
/* -------------------------------------------------------------------------- */
#include <typeindex>
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_MODEL_HH__
#define __AKANTU_MODEL_HH__
namespace akantu {
class SynchronizerRegistry;
class Parser;
class DumperIOHelper;
} // namespace akantu
/* -------------------------------------------------------------------------- */
namespace akantu {
class Model : public Memory, public ModelSolver, public MeshEventHandler {
/* ------------------------------------------------------------------------ */
/* Constructors/Destructors */
/* ------------------------------------------------------------------------ */
public:
Model(Mesh & mesh, const ModelType & type, UInt spatial_dimension = _all_dimensions,
const ID & id = "model", const MemoryID & memory_id = 0);
~Model() override;
using FEEngineMap = std::map<std::string, std::unique_ptr<FEEngine>>;
/* ------------------------------------------------------------------------ */
/* Methods */
/* ------------------------------------------------------------------------ */
protected:
virtual void initFullImpl(const ModelOptions & options);
public:
template <typename... pack>
std::enable_if_t<are_named_argument<pack...>::value>
initFull(pack &&... _pack) {
switch (this->model_type) {
case ModelType::_model:
this->initFullImpl(ModelOptions{use_named_args,
std::forward<decltype(_pack)>(_pack)...});
break;
case ModelType::_solid_mechanics_model:
this->initFullImpl(SolidMechanicsModelOptions{use_named_args,
std::forward<decltype(_pack)>(_pack)...});
break;
#ifdef AKANTU_COHESIVE_ELEMENT
case ModelType::_solid_mechanics_model_cohesive:
this->initFullImpl(SolidMechanicsModelCohesiveOptions{
use_named_args, std::forward<decltype(_pack)>(_pack)...});
break;
#endif
default:
AKANTU_EXCEPTION("Does not know what to do with the parameters");
}
}
template <typename... pack>
std::enable_if_t<not are_named_argument<pack...>::value>
initFull(pack &&... _pack) {
this->initFullImpl(std::forward<decltype(_pack)>(_pack)...);
}
/// initialize a new solver if needed
void initNewSolver(const AnalysisMethod & method);
protected:
/// get some default values for derived classes
virtual std::tuple<ID, TimeStepSolverType>
getDefaultSolverID(const AnalysisMethod & method) = 0;
virtual void initModel() = 0;
// /// change local equation number so that PBC is assembled properly
// void changeLocalEquationNumberForPBC(std::map<UInt, UInt> & pbc_pair,
// UInt dimension);
/// function to print the containt of the class
void printself(std::ostream &, int = 0) const override{};
// /// initialize the model for PBC
// void setPBC(UInt x, UInt y, UInt z);
// void setPBC(SurfacePairList & surface_pairs);
public:
virtual void initPBC();
/// set the parser to use
// void setParser(Parser & parser);
/* ------------------------------------------------------------------------ */
/* Access to the dumpable interface of the boundaries */
/* ------------------------------------------------------------------------ */
/// Dump the data for a given group
void dumpGroup(const std::string & group_name);
void dumpGroup(const std::string & group_name,
const std::string & dumper_name);
/// Dump the data for all boundaries
void dumpGroup();
/// Set the directory for a given group
void setGroupDirectory(const std::string & directory,
const std::string & group_name);
/// Set the directory for all boundaries
void setGroupDirectory(const std::string & directory);
/// Set the base name for a given group
void setGroupBaseName(const std::string & basename,
const std::string & group_name);
/// Get the internal dumper of a given group
DumperIOHelper & getGroupDumper(const std::string & group_name);
/* ------------------------------------------------------------------------ */
/* Function for non local capabilities */
/* ------------------------------------------------------------------------ */
virtual void updateDataForNonLocalCriterion(__attribute__((unused))
ElementTypeMapReal & criterion) {
AKANTU_DEBUG_TO_IMPLEMENT();
}
protected:
template <typename T>
void allocNodalField(Array<T> *& array, UInt nb_component, const ID & name);
/* ------------------------------------------------------------------------ */
/* Accessors */
/* ------------------------------------------------------------------------ */
public:
/// get id of model
AKANTU_GET_MACRO(ID, id, const ID)
/// get the number of surfaces
AKANTU_GET_MACRO(Mesh, mesh, Mesh &)
/// synchronize the boundary in case of parallel run
virtual void synchronizeBoundaries(){};
/// return the fem object associated with a provided name
inline FEEngine & getFEEngine(const ID & name = "") const;
/// return the fem boundary object associated with a provided name
virtual FEEngine & getFEEngineBoundary(const ID & name = "");
/// register a fem object associated with name
template <typename FEEngineClass>
inline void registerFEEngineObject(const std::string & name, Mesh & mesh,
UInt spatial_dimension);
/// unregister a fem object associated with name
inline void unRegisterFEEngineObject(const std::string & name);
/// return the synchronizer registry
SynchronizerRegistry & getSynchronizerRegistry();
/// return the fem object associated with a provided name
template <typename FEEngineClass>
inline FEEngineClass & getFEEngineClass(std::string name = "") const;
/// return the fem boundary object associated with a provided name
template <typename FEEngineClass>
inline FEEngineClass & getFEEngineClassBoundary(std::string name = "");
/// get the pbc pairs
std::map<UInt, UInt> & getPBCPairs() { return pbc_pair; };
/// returns if node is slave in pbc
inline bool isPBCSlaveNode(const UInt) const {
throw;
return false; /* TODO repair PBC*/
}
/// returns the array of pbc slave nodes (boolean information)
AKANTU_GET_MACRO(IsPBCSlaveNode, is_pbc_slave_node, const Array<bool> &)
/// Get the type of analysis method used
AKANTU_GET_MACRO(AnalysisMethod, method, AnalysisMethod);
/* ------------------------------------------------------------------------ */
/* Pack and unpack helper functions */
/* ------------------------------------------------------------------------ */
public:
inline UInt getNbIntegrationPoints(const Array<Element> & elements,
const ID & fem_id = ID()) const;
/* ------------------------------------------------------------------------ */
/* Dumpable interface (kept for convenience) and dumper relative functions */
/* ------------------------------------------------------------------------ */
void setTextModeToDumper();
virtual void addDumpGroupFieldToDumper(const std::string & field_id,
dumper::Field * field,
DumperIOHelper & dumper);
virtual void addDumpField(const std::string & field_id);
virtual void addDumpFieldVector(const std::string & field_id);
virtual void addDumpFieldToDumper(const std::string & dumper_name,
const std::string & field_id);
virtual void addDumpFieldVectorToDumper(const std::string & dumper_name,
const std::string & field_id);
virtual void addDumpFieldTensorToDumper(const std::string & dumper_name,
const std::string & field_id);
virtual void addDumpFieldTensor(const std::string & field_id);
virtual void setBaseName(const std::string & basename);
virtual void setBaseNameToDumper(const std::string & dumper_name,
const std::string & basename);
virtual void addDumpGroupField(const std::string & field_id,
const std::string & group_name);
virtual void addDumpGroupFieldToDumper(const std::string & dumper_name,
const std::string & field_id,
const std::string & group_name,
const ElementKind & element_kind,
bool padding_flag);
virtual void addDumpGroupFieldToDumper(const std::string & dumper_name,
const std::string & field_id,
const std::string & group_name,
UInt spatial_dimension,
const ElementKind & element_kind,
bool padding_flag);
virtual void removeDumpGroupField(const std::string & field_id,
const std::string & group_name);
virtual void removeDumpGroupFieldFromDumper(const std::string & dumper_name,
const std::string & field_id,
const std::string & group_name);
virtual void addDumpGroupFieldVector(const std::string & field_id,
const std::string & group_name);
virtual void addDumpGroupFieldVectorToDumper(const std::string & dumper_name,
const std::string & field_id,
const std::string & group_name);
virtual dumper::Field *
createNodalFieldReal(__attribute__((unused)) const std::string & field_name,
__attribute__((unused)) const std::string & group_name,
__attribute__((unused)) bool padding_flag) {
return nullptr;
}
virtual dumper::Field *
createNodalFieldUInt(__attribute__((unused)) const std::string & field_name,
__attribute__((unused)) const std::string & group_name,
__attribute__((unused)) bool padding_flag) {
return nullptr;
}
virtual dumper::Field *
createNodalFieldBool(__attribute__((unused)) const std::string & field_name,
__attribute__((unused)) const std::string & group_name,
__attribute__((unused)) bool padding_flag) {
return nullptr;
}
virtual dumper::Field *
createElementalField(__attribute__((unused)) const std::string & field_name,
__attribute__((unused)) const std::string & group_name,
__attribute__((unused)) bool padding_flag,
__attribute__((unused)) const UInt & spatial_dimension,
__attribute__((unused)) const ElementKind & kind) {
return nullptr;
}
void setDirectory(const std::string & directory);
void setDirectoryToDumper(const std::string & dumper_name,
const std::string & directory);
virtual void dump();
/* ------------------------------------------------------------------------ */
/* Class Members */
/* ------------------------------------------------------------------------ */
protected:
friend std::ostream & operator<<(std::ostream &, const Model &);
/// analysis method check the list in akantu::AnalysisMethod
AnalysisMethod method;
/// Mesh
Mesh & mesh;
/// Spatial dimension of the problem
UInt spatial_dimension;
/// the main fem object present in all models
FEEngineMap fems;
/// the fem object present in all models for boundaries
FEEngineMap fems_boundary;
/// default fem object
std::string default_fem;
/// pbc pairs
std::map<UInt, UInt> pbc_pair;
/// flag per node to know is pbc slave
Array<bool> is_pbc_slave_node;
/// parser to the pointer to use
Parser & parser;
};
/// standard output stream operator
inline std::ostream & operator<<(std::ostream & stream, const Model & _this) {
_this.printself(stream);
return stream;
}
} // namespace akantu
#include "model_inline_impl.cc"
#endif /* __AKANTU_MODEL_HH__ */

Event Timeline