Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F90415322
aka_grid_dynamic.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Nov 1, 11:42
Size
14 KB
Mime Type
text/x-c++
Expires
Sun, Nov 3, 11:42 (2 d)
Engine
blob
Format
Raw Data
Handle
22072363
Attached To
rAKA akantu
aka_grid_dynamic.hh
View Options
/**
* @file aka_grid_dynamic.hh
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
*
* @date creation: Thu Feb 21 2013
* @date last modification: Wed Nov 08 2017
*
* @brief Grid that is auto balanced
*
*
* Copyright (©) 2014-2018 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "aka_array.hh"
#include "aka_common.hh"
#include "aka_types.hh"
#include "mesh_accessor.hh"
#include <iostream>
/* -------------------------------------------------------------------------- */
#include <map>
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_AKA_GRID_DYNAMIC_HH_
#define AKANTU_AKA_GRID_DYNAMIC_HH_
namespace
akantu
{
class
Mesh
;
template
<
typename
T
>
class
SpatialGrid
{
public
:
explicit
SpatialGrid
(
UInt
dimension
)
:
dimension
(
dimension
),
spacing
(
dimension
),
center
(
dimension
),
lower
(
dimension
),
upper
(
dimension
),
empty_cell
()
{}
SpatialGrid
(
UInt
dimension
,
const
Vector
<
Real
>
&
spacing
,
const
Vector
<
Real
>
&
center
)
:
dimension
(
dimension
),
spacing
(
spacing
),
center
(
center
),
lower
(
dimension
),
upper
(
dimension
),
empty_cell
()
{
for
(
UInt
i
=
0
;
i
<
dimension
;
++
i
)
{
lower
(
i
)
=
std
::
numeric_limits
<
Real
>::
max
();
upper
(
i
)
=
-
std
::
numeric_limits
<
Real
>::
max
();
}
}
virtual
~
SpatialGrid
()
=
default
;
class
neighbor_cells_iterator
;
class
cells_iterator
;
class
CellID
{
public
:
CellID
()
=
default
;
explicit
CellID
(
UInt
dimention
)
:
ids
(
dimention
)
{}
void
setID
(
UInt
dir
,
Int
id
)
{
ids
(
dir
)
=
id
;
}
Int
getID
(
UInt
dir
)
const
{
return
ids
(
dir
);
}
bool
operator
<
(
const
CellID
&
id
)
const
{
return
std
::
lexicographical_compare
(
ids
.
storage
(),
ids
.
storage
()
+
ids
.
size
(),
id
.
ids
.
storage
(),
id
.
ids
.
storage
()
+
id
.
ids
.
size
());
}
bool
operator
==
(
const
CellID
&
id
)
const
{
return
std
::
equal
(
ids
.
storage
(),
ids
.
storage
()
+
ids
.
size
(),
id
.
ids
.
storage
());
}
bool
operator
!=
(
const
CellID
&
id
)
const
{
return
!
(
operator
==
(
id
));
}
class
neighbor_cells_iterator
:
private
std
::
iterator
<
std
::
forward_iterator_tag
,
UInt
>
{
public
:
neighbor_cells_iterator
(
const
CellID
&
cell_id
,
bool
end
)
:
cell_id
(
cell_id
),
position
(
cell_id
.
ids
.
size
(),
end
?
1
:
-
1
)
{
this
->
updateIt
();
if
(
end
)
{
this
->
it
++
;
}
}
neighbor_cells_iterator
&
operator
++
()
{
UInt
i
=
0
;
for
(;
i
<
position
.
size
()
&&
position
(
i
)
==
1
;
++
i
)
{
;
}
if
(
i
==
position
.
size
())
{
++
it
;
return
*
this
;
}
for
(
UInt
j
=
0
;
j
<
i
;
++
j
)
{
position
(
j
)
=
-
1
;
}
position
(
i
)
++
;
updateIt
();
return
*
this
;
}
neighbor_cells_iterator
operator
++
(
int
)
{
neighbor_cells_iterator
tmp
(
*
this
);
operator
++
();
return
tmp
;
};
bool
operator
==
(
const
neighbor_cells_iterator
&
rhs
)
const
{
return
cell_id
==
rhs
.
cell_id
&&
it
==
rhs
.
it
;
};
bool
operator
!=
(
const
neighbor_cells_iterator
&
rhs
)
const
{
return
!
operator
==
(
rhs
);
};
CellID
operator
*
()
const
{
CellID
cur_cell_id
(
cell_id
);
cur_cell_id
.
ids
+=
position
;
return
cur_cell_id
;
};
private
:
void
updateIt
()
{
it
=
0
;
for
(
UInt
i
=
0
;
i
<
position
.
size
();
++
i
)
{
it
=
it
*
3
+
(
position
(
i
)
+
1
);
}
}
private
:
/// central cell id
const
CellID
&
cell_id
;
// number representing the current neighbor in base 3;
UInt
it
;
// current cell shift
Vector
<
Int
>
position
;
};
class
Neighbors
{
public
:
explicit
Neighbors
(
const
CellID
&
cell_id
)
:
cell_id
(
cell_id
)
{}
decltype
(
auto
)
begin
()
{
return
neighbor_cells_iterator
(
cell_id
,
false
);
}
decltype
(
auto
)
end
()
{
return
neighbor_cells_iterator
(
cell_id
,
true
);
}
private
:
const
CellID
&
cell_id
;
};
decltype
(
auto
)
neighbors
()
{
return
Neighbors
(
*
this
);
}
private
:
friend
class
cells_iterator
;
Vector
<
Int
>
ids
;
};
/* ------------------------------------------------------------------------ */
class
Cell
{
public
:
using
iterator
=
typename
std
::
vector
<
T
>::
iterator
;
using
const_iterator
=
typename
std
::
vector
<
T
>::
const_iterator
;
Cell
()
:
id
(),
data
()
{}
explicit
Cell
(
const
CellID
&
cell_id
)
:
id
(
cell_id
),
data
()
{}
bool
operator
==
(
const
Cell
&
cell
)
const
{
return
id
==
cell
.
id
;
}
bool
operator
!=
(
const
Cell
&
cell
)
const
{
return
id
!=
cell
.
id
;
}
Cell
&
add
(
const
T
&
d
)
{
data
.
push_back
(
d
);
return
*
this
;
}
iterator
begin
()
{
return
data
.
begin
();
}
const_iterator
begin
()
const
{
return
data
.
begin
();
}
iterator
end
()
{
return
data
.
end
();
}
const_iterator
end
()
const
{
return
data
.
end
();
}
private
:
CellID
id
;
std
::
vector
<
T
>
data
;
};
private
:
using
cells_container
=
std
::
map
<
CellID
,
Cell
>
;
public
:
const
Cell
&
getCell
(
const
CellID
&
cell_id
)
const
{
auto
it
=
cells
.
find
(
cell_id
);
if
(
it
!=
cells
.
end
())
{
return
it
->
second
;
}
return
empty_cell
;
}
decltype
(
auto
)
beginCell
(
const
CellID
&
cell_id
)
{
auto
it
=
cells
.
find
(
cell_id
);
if
(
it
!=
cells
.
end
())
{
return
it
->
second
.
begin
();
}
return
empty_cell
.
begin
();
}
decltype
(
auto
)
endCell
(
const
CellID
&
cell_id
)
{
auto
it
=
cells
.
find
(
cell_id
);
if
(
it
!=
cells
.
end
())
{
return
it
->
second
.
end
();
}
return
empty_cell
.
end
();
}
decltype
(
auto
)
beginCell
(
const
CellID
&
cell_id
)
const
{
auto
it
=
cells
.
find
(
cell_id
);
if
(
it
!=
cells
.
end
())
{
return
it
->
second
.
begin
();
}
return
empty_cell
.
begin
();
}
decltype
(
auto
)
endCell
(
const
CellID
&
cell_id
)
const
{
auto
it
=
cells
.
find
(
cell_id
);
if
(
it
!=
cells
.
end
())
{
return
it
->
second
.
end
();
}
return
empty_cell
.
end
();
}
/* ------------------------------------------------------------------------ */
class
cells_iterator
:
private
std
::
iterator
<
std
::
forward_iterator_tag
,
CellID
>
{
public
:
explicit
cells_iterator
(
typename
std
::
map
<
CellID
,
Cell
>::
const_iterator
it
)
:
it
(
it
)
{}
cells_iterator
&
operator
++
()
{
this
->
it
++
;
return
*
this
;
}
cells_iterator
operator
++
(
int
)
{
cells_iterator
tmp
(
*
this
);
operator
++
();
return
tmp
;
};
bool
operator
==
(
const
cells_iterator
&
rhs
)
const
{
return
it
==
rhs
.
it
;
};
bool
operator
!=
(
const
cells_iterator
&
rhs
)
const
{
return
!
operator
==
(
rhs
);
};
CellID
operator
*
()
const
{
CellID
cur_cell_id
(
this
->
it
->
first
);
return
cur_cell_id
;
};
private
:
/// map iterator
typename
std
::
map
<
CellID
,
Cell
>::
const_iterator
it
;
};
public
:
template
<
class
vector_type
>
Cell
&
insert
(
const
T
&
d
,
const
vector_type
&
position
)
{
auto
&&
cell_id
=
getCellID
(
position
);
auto
&&
it
=
cells
.
find
(
cell_id
);
if
(
it
==
cells
.
end
())
{
Cell
cell
(
cell_id
);
auto
&
tmp
=
(
cells
[
cell_id
]
=
cell
).
add
(
d
);
for
(
UInt
i
=
0
;
i
<
dimension
;
++
i
)
{
Real
posl
=
center
(
i
)
+
cell_id
.
getID
(
i
)
*
spacing
(
i
);
Real
posu
=
posl
+
spacing
(
i
);
if
(
posl
<=
lower
(
i
))
{
lower
(
i
)
=
posl
;
}
if
(
posu
>
upper
(
i
))
{
upper
(
i
)
=
posu
;
}
}
return
tmp
;
}
return
it
->
second
.
add
(
d
);
}
/* ------------------------------------------------------------------------ */
inline
decltype
(
auto
)
begin
()
const
{
auto
begin
=
this
->
cells
.
begin
();
return
cells_iterator
(
begin
);
}
inline
decltype
(
auto
)
end
()
const
{
auto
end
=
this
->
cells
.
end
();
return
cells_iterator
(
end
);
}
template
<
class
vector_type
>
CellID
getCellID
(
const
vector_type
&
position
)
const
{
CellID
cell_id
(
dimension
);
for
(
UInt
i
=
0
;
i
<
dimension
;
++
i
)
{
cell_id
.
setID
(
i
,
getCellID
(
position
(
i
),
i
));
}
return
cell_id
;
}
void
printself
(
std
::
ostream
&
stream
,
int
indent
=
0
)
const
{
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
)
{
;
}
std
::
streamsize
prec
=
stream
.
precision
();
std
::
ios_base
::
fmtflags
ff
=
stream
.
flags
();
stream
.
setf
(
std
::
ios_base
::
showbase
);
stream
.
precision
(
5
);
stream
<<
space
<<
"SpatialGrid<"
<<
debug
::
demangle
(
typeid
(
T
).
name
())
<<
"> ["
<<
std
::
endl
;
stream
<<
space
<<
" + dimension : "
<<
this
->
dimension
<<
std
::
endl
;
stream
<<
space
<<
" + lower bounds : {"
;
for
(
UInt
i
=
0
;
i
<
lower
.
size
();
++
i
)
{
if
(
i
!=
0
)
{
stream
<<
", "
;
}
stream
<<
lower
(
i
);
};
stream
<<
"}"
<<
std
::
endl
;
stream
<<
space
<<
" + upper bounds : {"
;
for
(
UInt
i
=
0
;
i
<
upper
.
size
();
++
i
)
{
if
(
i
!=
0
)
{
stream
<<
", "
;
}
stream
<<
upper
(
i
);
};
stream
<<
"}"
<<
std
::
endl
;
stream
<<
space
<<
" + spacing : {"
;
for
(
UInt
i
=
0
;
i
<
spacing
.
size
();
++
i
)
{
if
(
i
!=
0
)
{
stream
<<
", "
;
}
stream
<<
spacing
(
i
);
};
stream
<<
"}"
<<
std
::
endl
;
stream
<<
space
<<
" + center : {"
;
for
(
UInt
i
=
0
;
i
<
center
.
size
();
++
i
)
{
if
(
i
!=
0
)
{
stream
<<
", "
;
}
stream
<<
center
(
i
);
};
stream
<<
"}"
<<
std
::
endl
;
stream
<<
space
<<
" + nb_cells : "
<<
this
->
cells
.
size
()
<<
"/"
;
Vector
<
Real
>
dist
(
this
->
dimension
);
dist
=
upper
;
dist
-=
lower
;
for
(
UInt
i
=
0
;
i
<
this
->
dimension
;
++
i
)
{
dist
(
i
)
/=
spacing
(
i
);
}
UInt
nb_cells
=
std
::
ceil
(
dist
(
0
));
for
(
UInt
i
=
1
;
i
<
this
->
dimension
;
++
i
)
{
nb_cells
*=
std
::
ceil
(
dist
(
i
));
}
stream
<<
nb_cells
<<
std
::
endl
;
stream
<<
space
<<
"]"
<<
std
::
endl
;
stream
.
precision
(
prec
);
stream
.
flags
(
ff
);
}
void
saveAsMesh
(
Mesh
&
mesh
)
const
;
private
:
/* --------------------------------------------------------------------------
*/
inline
UInt
getCellID
(
Real
position
,
UInt
direction
)
const
{
AKANTU_DEBUG_ASSERT
(
direction
<
center
.
size
(),
"The direction asked ("
<<
direction
<<
") is out of range "
<<
center
.
size
());
Real
dist_center
=
position
-
center
(
direction
);
Int
id
=
std
::
floor
(
dist_center
/
spacing
(
direction
));
// if(dist_center < 0) id--;
return
id
;
}
friend
class
GridSynchronizer
;
public
:
AKANTU_GET_MACRO
(
LowerBounds
,
lower
,
const
Vector
<
Real
>
&
);
AKANTU_GET_MACRO
(
UpperBounds
,
upper
,
const
Vector
<
Real
>
&
);
AKANTU_GET_MACRO
(
Spacing
,
spacing
,
const
Vector
<
Real
>
&
);
AKANTU_SET_MACRO
(
Spacing
,
spacing
,
Vector
<
Real
>
&
);
AKANTU_GET_MACRO
(
Center
,
center
,
const
Vector
<
Real
>
&
);
AKANTU_SET_MACRO
(
Center
,
center
,
Vector
<
Real
>
&
);
protected
:
UInt
dimension
;
cells_container
cells
;
Vector
<
Real
>
spacing
;
Vector
<
Real
>
center
;
Vector
<
Real
>
lower
;
Vector
<
Real
>
upper
;
Cell
empty_cell
;
};
/// standard output stream operator
template
<
typename
T
>
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
stream
,
const
SpatialGrid
<
T
>
&
_this
)
{
_this
.
printself
(
stream
);
return
stream
;
}
}
// namespace akantu
#include "mesh.hh"
namespace
akantu
{
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
void
SpatialGrid
<
T
>::
saveAsMesh
(
Mesh
&
mesh
)
const
{
ElementType
type
=
_not_defined
;
switch
(
dimension
)
{
case
1
:
type
=
_segment_2
;
break
;
case
2
:
type
=
_quadrangle_4
;
break
;
case
3
:
type
=
_hexahedron_8
;
break
;
}
MeshAccessor
mesh_accessor
(
mesh
);
auto
&
connectivity
=
mesh_accessor
.
getConnectivity
(
type
);
auto
&
nodes
=
mesh_accessor
.
getNodes
();
auto
&
uint_data
=
mesh
.
getDataPointer
<
UInt
>
(
"tag_1"
,
type
);
Vector
<
Real
>
pos
(
dimension
);
UInt
global_id
=
0
;
for
(
auto
&
cell_pair
:
cells
)
{
UInt
cur_node
=
nodes
.
size
();
UInt
cur_elem
=
connectivity
.
size
();
const
CellID
&
cell_id
=
cell_pair
.
first
;
for
(
UInt
i
=
0
;
i
<
dimension
;
++
i
)
{
pos
(
i
)
=
center
(
i
)
+
cell_id
.
getID
(
i
)
*
spacing
(
i
);
}
nodes
.
push_back
(
pos
);
for
(
UInt
i
=
0
;
i
<
dimension
;
++
i
)
{
pos
(
i
)
+=
spacing
(
i
);
}
nodes
.
push_back
(
pos
);
connectivity
.
push_back
(
cur_node
);
switch
(
dimension
)
{
case
1
:
connectivity
(
cur_elem
,
1
)
=
cur_node
+
1
;
break
;
case
2
:
pos
(
0
)
-=
spacing
(
0
);
nodes
.
push_back
(
pos
);
pos
(
0
)
+=
spacing
(
0
);
pos
(
1
)
-=
spacing
(
1
);
nodes
.
push_back
(
pos
);
connectivity
(
cur_elem
,
1
)
=
cur_node
+
3
;
connectivity
(
cur_elem
,
2
)
=
cur_node
+
1
;
connectivity
(
cur_elem
,
3
)
=
cur_node
+
2
;
break
;
case
3
:
pos
(
1
)
-=
spacing
(
1
);
pos
(
2
)
-=
spacing
(
2
);
nodes
.
push_back
(
pos
);
pos
(
1
)
+=
spacing
(
1
);
nodes
.
push_back
(
pos
);
pos
(
0
)
-=
spacing
(
0
);
nodes
.
push_back
(
pos
);
pos
(
1
)
-=
spacing
(
1
);
pos
(
2
)
+=
spacing
(
2
);
nodes
.
push_back
(
pos
);
pos
(
0
)
+=
spacing
(
0
);
nodes
.
push_back
(
pos
);
pos
(
0
)
-=
spacing
(
0
);
pos
(
1
)
+=
spacing
(
1
);
nodes
.
push_back
(
pos
);
connectivity
(
cur_elem
,
1
)
=
cur_node
+
2
;
connectivity
(
cur_elem
,
2
)
=
cur_node
+
3
;
connectivity
(
cur_elem
,
3
)
=
cur_node
+
4
;
connectivity
(
cur_elem
,
4
)
=
cur_node
+
5
;
connectivity
(
cur_elem
,
5
)
=
cur_node
+
6
;
connectivity
(
cur_elem
,
6
)
=
cur_node
+
1
;
connectivity
(
cur_elem
,
7
)
=
cur_node
+
7
;
break
;
}
uint_data
.
push_back
(
global_id
);
++
global_id
;
}
}
}
// namespace akantu
#endif
/* AKANTU_AKA_GRID_DYNAMIC_HH_ */
Event Timeline
Log In to Comment