Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F92428743
phase_field_notch.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Nov 20, 05:35
Size
4 KB
Mime Type
text/x-c
Expires
Fri, Nov 22, 05:35 (2 d)
Engine
blob
Format
Raw Data
Handle
22434848
Attached To
rAKA akantu
phase_field_notch.cc
View Options
/**
* Copyright (©) 2018-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "coupler_solid_phasefield.hh"
#include "phase_field_element_filter.hh"
/* -------------------------------------------------------------------------- */
#include <chrono>
#include <iostream>
/* -------------------------------------------------------------------------- */
using
namespace
akantu
;
/* -------------------------------------------------------------------------- */
using
clk
=
std
::
chrono
::
high_resolution_clock
;
using
second
=
std
::
chrono
::
duration
<
double
>
;
using
millisecond
=
std
::
chrono
::
duration
<
double
,
std
::
milli
>
;
const
Int
spatial_dimension
=
2
;
/* -------------------------------------------------------------------------- */
int
main
(
int
argc
,
char
*
argv
[])
{
initialize
(
"material_notch.dat"
,
argc
,
argv
);
// create mesh
Mesh
mesh
(
spatial_dimension
);
mesh
.
read
(
"square_notch.msh"
);
// The model coupler contains the solid mechanics and the phase-field models
CouplerSolidPhaseField
coupler
(
mesh
);
auto
&
model
=
coupler
.
getSolidMechanicsModel
();
auto
&
phase
=
coupler
.
getPhaseFieldModel
();
// Each model can bet set separately
model
.
initFull
(
_analysis_method
=
_static
);
phase
.
initFull
(
_analysis_method
=
_static
);
// Dirichlet BC
model
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.
,
_y
),
"bottom"
);
model
.
applyBC
(
BC
::
Dirichlet
::
FixedValue
(
0.
,
_x
),
"left"
);
// Dumper settings
model
.
setBaseName
(
"phase_notch"
);
model
.
addDumpField
(
"stress"
);
model
.
addDumpField
(
"grad_u"
);
model
.
addDumpFieldVector
(
"displacement"
);
model
.
addDumpField
(
"damage"
);
model
.
dump
();
const
Int
nb_steps
=
1000
;
Real
increment
=
6e-6
;
Int
nb_staggered_steps
=
5
;
auto
start_time
=
clk
::
now
();
// Main loop over the loading steps
for
(
Int
s
=
1
;
s
<
nb_steps
;
++
s
)
{
if
(
s
>=
500
)
{
increment
=
2e-6
;
nb_staggered_steps
=
10
;
}
if
(
s
%
200
==
0
)
{
constexpr
std
::
array
<
char
,
5
>
wheel
{
"/-
\\
|"
};
auto
elapsed
=
clk
::
now
()
-
start_time
;
auto
time_per_step
=
elapsed
/
s
;
int
idx
=
(
s
/
10
)
%
4
;
std
::
cout
<<
"
\r
["
<<
wheel
.
at
(
idx
)
<<
"] "
<<
std
::
setw
(
5
)
<<
s
<<
"/"
<<
nb_steps
<<
" ("
<<
std
::
setprecision
(
2
)
<<
std
::
fixed
<<
std
::
setw
(
8
)
<<
millisecond
(
time_per_step
).
count
()
<<
"ms/step - elapsed: "
<<
std
::
setw
(
8
)
<<
second
(
elapsed
).
count
()
<<
"s - ETA: "
<<
std
::
setw
(
8
)
<<
second
((
nb_steps
-
s
)
*
time_per_step
).
count
()
<<
"s)"
<<
std
::
string
(
' '
,
20
)
<<
std
::
flush
;
}
model
.
applyBC
(
BC
::
Dirichlet
::
IncrementValue
(
increment
,
_y
),
"top"
);
/* At each step, the two solvers are called alternately. Here a fixed number
* of staggered iterations is set for simplicity but a convergence based on
* the displacements, damage and/or energy can also be used to exit the
* internal loop.*/
for
(
Idx
i
=
0
;
i
<
nb_staggered_steps
;
++
i
)
{
coupler
.
solve
();
}
if
(
s
%
100
==
0
)
{
model
.
dump
();
}
}
/* Here a damage threshold is set and a mesh clustering function is called
* using the phase-field element filter. This allows to cluster the mesh into
* groups of elements separated by the mesh boundaries and "broken" elements
* with damage above the threshold. */
Real
damage_limit
=
0.15
;
auto
global_nb_clusters
=
mesh
.
createClusters
(
spatial_dimension
,
"crack"
,
PhaseFieldElementFilter
(
phase
,
damage_limit
));
model
.
dumpGroup
(
"crack_0"
);
model
.
dumpGroup
(
"crack_1"
);
std
::
cout
<<
std
::
endl
;
std
::
cout
<<
"Nb clusters: "
<<
global_nb_clusters
<<
std
::
endl
;
finalize
();
return
EXIT_SUCCESS
;
}
Event Timeline
Log In to Comment