Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F99439535
aka_ball.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Jan 24, 14:10
Size
7 KB
Mime Type
text/x-c++
Expires
Sun, Jan 26, 14:10 (2 d)
Engine
blob
Format
Raw Data
Handle
23763702
Attached To
rAKA akantu
aka_ball.hh
View Options
/**
* @file aka_ball.hh
*
* @author Alejandro M. Aragón <alejandro.aragon@epfl.ch>
*
* @date creation: Fri Jan 04 2013
* @date last modification: Tue Jun 17 2014
*
* @brief bounding ball classes
*
* @section LICENSE
*
* Copyright (©) 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#ifndef __AKANTU_BALL_HH__
#define __AKANTU_BALL_HH__
#include <iostream>
#include "aka_common.hh"
#include "aka_point.hh"
#include "aka_bounding_box.hh"
__BEGIN_AKANTU__
static
Real
epsilon
=
10
*
std
::
numeric_limits
<
Real
>::
epsilon
();
using
std
::
cout
;
using
std
::
endl
;
//! Ball class template
/*! This class template represents the abstraction of a d-dimensional sphere.
* \tparam d - Ball dimension
*/
template
<
int
d
>
class
Ball
:
public
Bounding_volume
<
d
>
{
public
:
typedef
Bounding_volume
<
d
>
base_type
;
typedef
typename
base_type
::
point_type
point_type
;
typedef
typename
point_type
::
value_type
value_type
;
typedef
BoundingBox
<
d
>
aabb_type
;
//! Return ball dimension
constexpr
static
int
dim
()
{
return
d
;
}
//! Parameter constructor takes the ball center point and its radius
Ball
(
const
point_type
&
c
=
point_type
(),
value_type
r
=
value_type
())
:
base_type
(),
c_
(
c
),
r_
(
r
)
{}
//! Combine two ball objects
virtual
base_type
*
combine
(
const
base_type
&
b
)
const
{
const
Ball
*
sp
=
dynamic_cast
<
const
Ball
*>
(
&
b
);
assert
(
sp
!=
nullptr
);
const
Ball
&
s0
=
*
sp
;
Ball
r
(
s0
);
r
+=
*
this
;
return
new
Ball
(
r
);
}
//! Standard output stream operator
virtual
std
::
ostream
&
print
(
std
::
ostream
&
os
)
const
;
aabb_type
bounding_box
()
const
{
point_type
o
=
r_
*
point_type
(
1.
);
return
aabb_type
(
c_
-
o
,
c_
+
o
);
}
//! Get ball center
point_type
const
&
center
()
const
{
return
c_
;
}
//! Get ball radius
value_type
const
&
radius
()
const
{
return
r_
;
}
//! Use in generic code as comparative measure of how big the sphere is
value_type
measure
()
const
;
//! Grow sphere if point lies outside of it
Ball
&
operator
+=
(
const
point_type
&
p
)
{
point_type
diff
=
p
-
c_
;
value_type
sq_norm
=
diff
.
sq_norm
();
if
(
sq_norm
>
r_
*
r_
)
{
value_type
norm
=
sqrt
(
sq_norm
);
value_type
new_r
=
0.5
*
(
r_
+
norm
);
value_type
scalar
=
(
new_r
-
r_
)
/
norm
;
r_
=
new_r
;
c_
+=
scalar
*
diff
;
}
return
*
this
;
}
//! Determine the ball that encloses both spheres
Ball
&
operator
+=
(
const
Ball
s
)
{
point_type
diff
=
s
.
c_
-
c_
;
value_type
sq_norm
=
diff
.
sq_norm
();
// one ball is contained within the other
if
(
pow
(
s
.
r_
-
r_
,
2
)
>=
sq_norm
)
{
if
(
s
.
r_
>=
r_
)
this
->
operator
=
(
s
);
// else do nothing, as the current ball is bigger
// and no further changes are required
}
// else balls partially overlapping or disjoint
else
{
// compute new radius
value_type
norm
=
sqrt
(
sq_norm
);
value_type
tmp
=
r_
;
r_
=
0.5
*
(
norm
+
r_
+
s
.
r_
);
if
(
norm
>
epsilon
)
c_
+=
((
r_
-
tmp
)
/
norm
)
*
diff
;
}
return
*
this
;
}
//! Check for collision with a point
bool
operator
&
(
const
point_type
&
p
)
const
{
return
(
p
-
c_
).
sq_norm
()
-
r_
*
r_
<
epsilon
;
}
//! Check for collision with another ball
bool
operator
&
(
const
Ball
&
s
)
const
{
return
(
c_
-
s
.
c_
).
sq_norm
()
-
pow
(
r_
+
s
.
r_
,
2.
)
<
epsilon
;
}
//! Compute ball from intersection of bounding boxes of two balls
Ball
operator
&&
(
const
Ball
&
b
)
const
{
// get bounding boxes of spheres
aabb_type
bb1
=
bounding_box
();
aabb_type
bb2
=
b
.
bounding_box
();
// compute intersection
aabb_type
bbint
=
bb1
&&
bb2
;
// compute center and radius of the sphere
point_type
c
=
0.5
*
(
bbint
.
min
()
+
bbint
.
max
());
value_type
r
=
sqrt
((
bbint
.
min
()
-
bbint
.
max
()).
sq_norm
());
// construct sphere
return
Ball
(
c
,
r
);
}
private
:
point_type
c_
;
//!< Ball center
Real
r_
;
//!< Ball radius
};
//! Interval type definition
typedef
Ball
<
1
>
Interval
;
//! Circle type definition
typedef
Ball
<
2
>
Circle
;
//! Sphere type definition
typedef
Ball
<
3
>
Sphere
;
//! Add two balls
template
<
int
d
>
Ball
<
d
>
operator
+
(
const
Ball
<
d
>&
s1
,
const
Ball
<
d
>&
s2
)
{
Ball
<
d
>
r
(
s1
);
return
r
+=
s2
;
}
//! Extreme points algirhtm by Ritter
/*! J. Ritter, Graphics gems, Academic Press Professional, Inc., San Diego, CA, USA, 1990, Ch.
* An efficient bounding sphere, pp. 301–303. URL http://dl.acm.org/citation.cfm?id=90767.90836
*/
template
<
class
point_container
>
std
::
pair
<
size_t
,
size_t
>
extreme_points
(
const
point_container
&
pts
)
{
typedef
typename
point_container
::
value_type
point_type
;
typedef
typename
point_type
::
value_type
value_type
;
size_t
min
[]
=
{
0
,
0
,
0
};
size_t
max
[]
=
{
0
,
0
,
0
};
// loop over container points to find extremal points
for
(
size_t
i
=
1
;
i
<
pts
.
size
();
++
i
)
{
const
point_type
&
p
=
pts
[
i
];
// loop over coordinates
for
(
int
j
=
0
;
j
<
point_type
::
dim
();
++
j
)
{
// check if new point is minimum
if
(
p
[
j
]
<
pts
[
min
[
j
]][
j
])
min
[
j
]
=
i
;
// check if new point is maximum
else
if
(
p
[
j
]
>
pts
[
max
[
j
]][
j
])
max
[
j
]
=
i
;
}
}
// pick the pair of the longest distance
size_t
m
=
0
,
M
=
0
;
value_type
sq_norm
=
value_type
();
for
(
int
i
=
0
;
i
<
point_type
::
dim
();
++
i
)
{
point_type
diff
=
pts
[
max
[
i
]]
-
pts
[
min
[
i
]];
value_type
new_sq_norm
=
diff
.
sq_norm
();
if
(
new_sq_norm
>
sq_norm
)
{
m
=
min
[
i
];
M
=
max
[
i
];
sq_norm
=
new_sq_norm
;
}
}
return
std
::
make_pair
(
m
,
M
);
}
//! Create a bounding ball from a container of points
template
<
int
d
,
class
point_container
>
Ball
<
d
>
bounding_ball
(
const
point_container
&
pts
)
{
assert
(
!
pts
.
empty
());
typedef
typename
point_container
::
value_type
point_type
;
typedef
typename
point_type
::
value_type
value_type
;
// find extreme points on axis-aligned bounding box to construct
// first approximation of the sphere
std
::
pair
<
size_t
,
size_t
>
mM
=
extreme_points
(
pts
);
// compute center and radius of the sphere
const
point_type
&
m
=
pts
[
mM
.
first
];
const
point_type
&
M
=
pts
[
mM
.
second
];
point_type
c
=
0.5
*
(
m
+
M
);
value_type
r
=
sqrt
((
M
-
c
).
sq_norm
());
// construct sphere
Ball
<
d
>
s
(
c
,
r
);
// second pass: update the sphere so that all points lie inside
for
(
size_t
i
=
0
;
i
<
pts
.
size
();
++
i
)
s
+=
pts
[
i
];
return
s
;
}
__END_AKANTU__
#endif
/* __AKANTU_BALL_HH__ */
Event Timeline
Log In to Comment