Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F93872956
aka_bbox.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Mon, Dec 2, 04:20
Size
9 KB
Mime Type
text/x-c++
Expires
Wed, Dec 4, 04:20 (1 d, 23 h)
Engine
blob
Format
Raw Data
Handle
22660263
Attached To
rAKA akantu
aka_bbox.hh
View Options
/**
* Copyright (©) 2018-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "aka_iterators.hh"
#include "aka_math.hh"
#include "aka_types.hh"
#include "communicator.hh"
/* -------------------------------------------------------------------------- */
#include <map>
#include <vector>
/* -------------------------------------------------------------------------- */
#ifndef AKANTU_AKA_BBOX_HH_
#define AKANTU_AKA_BBOX_HH_
namespace
akantu
{
class
BBox
{
public
:
BBox
()
=
default
;
BBox
(
Int
spatial_dimension
)
:
dim
(
spatial_dimension
),
lower_bounds
(
spatial_dimension
),
upper_bounds
(
spatial_dimension
)
{
lower_bounds
.
fill
(
std
::
numeric_limits
<
Real
>::
max
());
upper_bounds
.
fill
(
-
std
::
numeric_limits
<
Real
>::
max
());
}
BBox
(
const
BBox
&
other
)
:
dim
(
other
.
dim
),
empty
{
false
},
lower_bounds
(
other
.
lower_bounds
),
upper_bounds
(
other
.
upper_bounds
)
{}
BBox
&
operator
=
(
const
BBox
&
other
)
{
if
(
this
!=
&
other
)
{
this
->
dim
=
other
.
dim
;
this
->
lower_bounds
=
other
.
lower_bounds
;
this
->
upper_bounds
=
other
.
upper_bounds
;
this
->
empty
=
other
.
empty
;
}
return
*
this
;
}
inline
BBox
&
operator
+=
(
const
Vector
<
Real
>
&
position
)
{
AKANTU_DEBUG_ASSERT
(
this
->
dim
==
position
.
size
(),
"You are adding a point of a wrong dimension to the bounding box"
);
this
->
empty
=
false
;
for
(
auto
s
:
arange
(
dim
))
{
lower_bounds
(
s
)
=
std
::
min
(
lower_bounds
(
s
),
position
(
s
));
upper_bounds
(
s
)
=
std
::
max
(
upper_bounds
(
s
),
position
(
s
));
}
return
*
this
;
}
/* ------------------------------------------------------------------------ */
inline
bool
intersects
(
const
BBox
&
other
,
const
SpatialDirection
&
direction
)
const
{
AKANTU_DEBUG_ASSERT
(
this
->
dim
==
other
.
dim
,
"You are intersecting bounding boxes of different dimensions"
);
return
Math
::
intersects
(
lower_bounds
(
direction
),
upper_bounds
(
direction
),
other
.
lower_bounds
(
direction
),
other
.
upper_bounds
(
direction
));
}
inline
bool
intersects
(
const
BBox
&
other
)
const
{
if
(
this
->
empty
or
other
.
empty
)
{
return
false
;
}
bool
intersects_
=
true
;
for
(
auto
s
:
arange
(
this
->
dim
))
{
intersects_
&=
this
->
intersects
(
other
,
SpatialDirection
(
s
));
}
return
intersects_
;
}
/* ------------------------------------------------------------------------ */
inline
BBox
intersection
(
const
BBox
&
other
)
const
{
AKANTU_DEBUG_ASSERT
(
this
->
dim
==
other
.
dim
,
"You are intersecting bounding boxes of different dimensions"
);
BBox
intersection_
(
this
->
dim
);
intersection_
.
empty
=
not
this
->
intersects
(
other
);
if
(
intersection_
.
empty
)
{
return
intersection_
;
}
for
(
auto
s
:
arange
(
this
->
dim
))
{
// is lower point in range ?
bool
point1
=
Math
::
is_in_range
(
other
.
lower_bounds
(
s
),
lower_bounds
(
s
),
upper_bounds
(
s
));
// is upper point in range ?
bool
point2
=
Math
::
is_in_range
(
other
.
upper_bounds
(
s
),
lower_bounds
(
s
),
upper_bounds
(
s
));
if
(
point1
and
not
point2
)
{
// |-----------| this (i)
// |-----------| other(i)
// 1 2
intersection_
.
lower_bounds
(
s
)
=
other
.
lower_bounds
(
s
);
intersection_
.
upper_bounds
(
s
)
=
upper_bounds
(
s
);
}
else
if
(
point1
&&
point2
)
{
// |-----------------| this (i)
// |-----------| other(i)
// 1 2
intersection_
.
lower_bounds
(
s
)
=
other
.
lower_bounds
(
s
);
intersection_
.
upper_bounds
(
s
)
=
other
.
upper_bounds
(
s
);
}
else
if
(
!
point1
&&
point2
)
{
// |-----------| this (i)
// |-----------| other(i)
// 1 2
intersection_
.
lower_bounds
(
s
)
=
this
->
lower_bounds
(
s
);
intersection_
.
upper_bounds
(
s
)
=
other
.
upper_bounds
(
s
);
}
else
{
// |-----------| this (i)
// |-----------------| other(i)
// 1 2
intersection_
.
lower_bounds
(
s
)
=
this
->
lower_bounds
(
s
);
intersection_
.
upper_bounds
(
s
)
=
this
->
upper_bounds
(
s
);
}
}
return
intersection_
;
}
/* ------------------------------------------------------------------------ */
template
<
class
Derived
>
inline
bool
contains
(
const
Eigen
::
MatrixBase
<
Derived
>
&
point
)
const
{
return
(
point
.
array
()
>=
lower_bounds
.
array
()).
all
()
and
(
point
.
array
()
<=
upper_bounds
.
array
()).
all
();
}
/* ------------------------------------------------------------------------ */
inline
void
reset
()
{
lower_bounds
.
set
(
std
::
numeric_limits
<
Real
>::
max
());
upper_bounds
.
set
(
std
::
numeric_limits
<
Real
>::
lowest
());
}
/* ------------------------------------------------------------------------ */
template
<
class
Derived
>
inline
void
getCenter
(
Eigen
::
MatrixBase
<
Derived
>
&
center
)
{
center
=
(
upper_bounds
+
lower_bounds
)
/
2.
;
}
/* ------------------------------------------------------------------------ */
const
Vector
<
Real
>
&
getLowerBounds
()
const
{
return
lower_bounds
;
}
const
Vector
<
Real
>
&
getUpperBounds
()
const
{
return
upper_bounds
;
}
template
<
typename
D
>
void
setLowerBounds
(
const
Eigen
::
MatrixBase
<
D
>
&
lower_bounds
)
{
this
->
lower_bounds
=
lower_bounds
;
this
->
empty
=
false
;
}
template
<
typename
D
>
void
setUpperBounds
(
const
Eigen
::
MatrixBase
<
D
>
&
upper_bounds
)
{
this
->
upper_bounds
=
upper_bounds
;
this
->
empty
=
false
;
}
/* ------------------------------------------------------------------------ */
inline
Real
size
(
const
SpatialDirection
&
direction
)
const
{
return
upper_bounds
(
direction
)
-
lower_bounds
(
direction
);
}
Vector
<
Real
>
size
()
const
{
Vector
<
Real
>
size_
(
dim
);
for
(
auto
s
:
arange
(
this
->
dim
))
{
size_
(
s
)
=
this
->
size
(
SpatialDirection
(
s
));
}
return
size_
;
}
inline
operator
bool
()
const
{
return
not
empty
;
}
/* ------------------------------------------------------------------------ */
BBox
allSum
(
const
Communicator
&
communicator
)
const
{
Matrix
<
Real
>
reduce_bounds
(
dim
,
2
);
reduce_bounds
(
0
)
=
lower_bounds
;
reduce_bounds
(
1
)
=
Real
(
-
1.
)
*
upper_bounds
;
communicator
.
allReduce
(
reduce_bounds
,
SynchronizerOperation
::
_min
);
BBox
global
(
dim
);
global
.
lower_bounds
=
reduce_bounds
(
0
);
global
.
upper_bounds
=
Real
(
-
1.
)
*
reduce_bounds
(
1
);
global
.
empty
=
false
;
return
global
;
}
std
::
vector
<
BBox
>
allGather
(
const
Communicator
&
communicator
)
const
{
auto
prank
=
communicator
.
whoAmI
();
auto
nb_proc
=
communicator
.
getNbProc
();
Array
<
Real
>
bboxes_data
(
nb_proc
,
dim
*
2
+
1
);
auto
*
base
=
bboxes_data
.
data
()
+
prank
*
(
2
*
dim
+
1
);
MatrixProxy
<
Real
>
bounds
(
base
,
dim
,
2
);
bounds
(
0
)
=
lower_bounds
;
bounds
(
1
)
=
upper_bounds
;
base
[
dim
*
2
]
=
empty
?
1.
:
0.
;
// ugly trick
communicator
.
allGather
(
bboxes_data
);
std
::
vector
<
BBox
>
bboxes
;
bboxes
.
reserve
(
nb_proc
);
for
(
auto
p
:
arange
(
nb_proc
))
{
bboxes
.
emplace_back
(
dim
);
auto
&
bbox
=
bboxes
.
back
();
auto
*
base
=
bboxes_data
.
data
()
+
p
*
(
2
*
dim
+
1
);
MatrixProxy
<
Real
>
bounds
(
base
,
dim
,
2
);
bbox
.
lower_bounds
=
bounds
(
0
);
bbox
.
upper_bounds
=
bounds
(
1
);
bbox
.
empty
=
(
base
[
dim
*
2
]
==
1.
);
}
return
bboxes
;
}
std
::
map
<
Int
,
BBox
>
intersection
(
const
BBox
&
other
,
const
Communicator
&
communicator
)
const
{
// todo: change for a custom reduction algorithm
auto
other_bboxes
=
other
.
allGather
(
communicator
);
std
::
map
<
Int
,
BBox
>
intersections
;
for
(
const
auto
&
bbox
:
enumerate
(
other_bboxes
))
{
auto
&&
tmp
=
this
->
intersection
(
std
::
get
<
1
>
(
bbox
));
if
(
tmp
)
{
intersections
[
std
::
get
<
0
>
(
bbox
)]
=
tmp
;
}
}
return
intersections
;
}
void
printself
(
std
::
ostream
&
stream
)
const
{
stream
<<
"BBox["
;
if
(
not
empty
)
{
stream
<<
lower_bounds
<<
" - "
<<
upper_bounds
;
}
stream
<<
"]"
;
}
protected
:
Int
dim
{
0
};
bool
empty
{
true
};
Vector
<
Real
>
lower_bounds
;
Vector
<
Real
>
upper_bounds
;
};
inline
std
::
ostream
&
operator
<<
(
std
::
ostream
&
stream
,
const
BBox
&
bbox
)
{
bbox
.
printself
(
stream
);
return
stream
;
}
}
// namespace akantu
#endif
/* AKANTU_AKA_BBOX_HH_ */
Event Timeline
Log In to Comment