Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94982728
aka_math_tmpl.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Wed, Dec 11, 22:35
Size
7 KB
Mime Type
text/x-c
Expires
Fri, Dec 13, 22:35 (2 d)
Engine
blob
Format
Raw Data
Handle
22858792
Attached To
rAKA akantu
aka_math_tmpl.hh
View Options
/**
* Copyright (©) 2010-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
/* -------------------------------------------------------------------------- */
#include "aka_math.hh"
#include "aka_types.hh"
/* -------------------------------------------------------------------------- */
#include <cmath>
#include <typeinfo>
/* -------------------------------------------------------------------------- */
namespace
akantu
{
namespace
Math
{
/* ------------------------------------------------------------------------ */
template
<
class
D1
,
aka
::
enable_if_t
<
aka
::
is_vector_v
<
D1
>>
*>
inline
Vector
<
Real
>
normal
(
const
Eigen
::
MatrixBase
<
D1
>
&
vec
)
{
Vector
<
Real
>
normal_
(
vec
);
normal_
[
0
]
=
vec
[
1
];
normal_
[
1
]
=
-
vec
[
0
];
normal_
.
normalize
();
return
normal_
;
}
/* ------------------------------------------------------------------------ */
template
<
class
D1
,
class
D2
,
aka
::
enable_if_vectors_t
<
D1
,
D2
>
*>
inline
Vector
<
Real
,
3
>
normal
(
const
Eigen
::
MatrixBase
<
D1
>
&
vec1
,
const
Eigen
::
MatrixBase
<
D2
>
&
vec2
)
{
AKANTU_DEBUG_ASSERT
(
vec1
.
cols
()
==
1
and
vec1
.
rows
()
==
3
,
"Vec is not of the proper size"
);
AKANTU_DEBUG_ASSERT
(
vec2
.
cols
()
==
1
and
vec2
.
rows
()
==
3
,
"Vec is not of the proper size"
);
Vector
<
Real
,
3
>
vec1_
(
vec1
);
Vector
<
Real
,
3
>
vec2_
(
vec2
);
Vector
<
Real
,
3
>
normal_
=
(
vec1_
.
cross
(
vec2_
)).
normalized
();
return
normal_
;
}
/* ------------------------------------------------------------------------ */
template
<
class
D1
,
class
D2
,
class
D3
>
inline
Real
triangle_inradius
(
const
Eigen
::
MatrixBase
<
D1
>
&
coord1
,
const
Eigen
::
MatrixBase
<
D2
>
&
coord2
,
const
Eigen
::
MatrixBase
<
D3
>
&
coord3
)
{
auto
a
=
coord1
.
distance
(
coord2
);
auto
b
=
coord2
.
distance
(
coord3
);
auto
c
=
coord1
.
distance
(
coord3
);
auto
s
=
(
a
+
b
+
c
)
/
2.
;
return
std
::
sqrt
((
s
-
a
)
*
(
s
-
b
)
*
(
s
-
c
)
/
s
);
}
/* ------------------------------------------------------------------------ */
template
<
class
D1
,
class
D2
,
class
D3
,
class
D4
>
inline
Real
tetrahedron_volume
(
const
Eigen
::
MatrixBase
<
D1
>
&
coord1
,
const
Eigen
::
MatrixBase
<
D2
>
&
coord2
,
const
Eigen
::
MatrixBase
<
D3
>
&
coord3
,
const
Eigen
::
MatrixBase
<
D4
>
&
coord4
)
{
Matrix
<
Real
,
3
,
3
>
xx
;
xx
.
col
(
0
)
=
coord2
;
xx
.
col
(
1
)
=
coord3
;
xx
.
col
(
2
)
=
coord4
;
auto
vol
=
xx
.
determinant
();
xx
.
col
(
0
)
=
coord1
;
vol
-=
xx
.
determinant
();
xx
.
col
(
1
)
=
coord2
;
vol
+=
xx
.
determinant
();
xx
.
col
(
2
)
=
coord3
;
vol
-=
xx
.
determinant
();
vol
/=
6
;
return
vol
;
}
/* ------------------------------------------------------------------------ */
template
<
class
D1
,
class
D2
,
class
D3
,
class
D4
>
inline
Real
tetrahedron_inradius
(
const
Eigen
::
MatrixBase
<
D1
>
&
coord1
,
const
Eigen
::
MatrixBase
<
D2
>
&
coord2
,
const
Eigen
::
MatrixBase
<
D3
>
&
coord3
,
const
Eigen
::
MatrixBase
<
D4
>
&
coord4
)
{
auto
l12
=
coord1
.
distance
(
coord2
);
auto
l13
=
coord1
.
distance
(
coord3
);
auto
l14
=
coord1
.
distance
(
coord4
);
auto
l23
=
coord2
.
distance
(
coord3
);
auto
l24
=
coord2
.
distance
(
coord4
);
auto
l34
=
coord3
.
distance
(
coord4
);
auto
s1
=
(
l12
+
l23
+
l13
)
*
0.5
;
s1
=
std
::
sqrt
(
s1
*
(
s1
-
l12
)
*
(
s1
-
l23
)
*
(
s1
-
l13
));
auto
s2
=
(
l12
+
l24
+
l14
)
*
0.5
;
s2
=
std
::
sqrt
(
s2
*
(
s2
-
l12
)
*
(
s2
-
l24
)
*
(
s2
-
l14
));
auto
s3
=
(
l23
+
l34
+
l24
)
*
0.5
;
s3
=
std
::
sqrt
(
s3
*
(
s3
-
l23
)
*
(
s3
-
l34
)
*
(
s3
-
l24
));
auto
s4
=
(
l13
+
l34
+
l14
)
*
0.5
;
s4
=
std
::
sqrt
(
s4
*
(
s4
-
l13
)
*
(
s4
-
l34
)
*
(
s4
-
l14
));
auto
volume
=
Math
::
tetrahedron_volume
(
coord1
,
coord2
,
coord3
,
coord4
);
return
3
*
volume
/
(
s1
+
s2
+
s3
+
s4
);
}
/* ------------------------------------------------------------------------ */
template
<
class
D1
,
class
D2
>
inline
void
barycenter
(
const
Eigen
::
MatrixBase
<
D1
>
&
coord
,
Eigen
::
MatrixBase
<
D2
>
&
barycenter
)
{
barycenter
.
zero
();
for
(
auto
&&
x
:
coord
)
{
barycenter
+=
x
;
}
barycenter
/=
(
Real
)
coord
.
cols
();
}
/* ------------------------------------------------------------------------ */
/// Combined absolute and relative tolerance test proposed in
/// Real-time collision detection by C. Ericson (2004)
inline
bool
are_float_equal
(
const
Real
x
,
const
Real
y
)
{
Real
abs_max
=
std
::
max
(
std
::
abs
(
x
),
std
::
abs
(
y
));
abs_max
=
std
::
max
(
abs_max
,
Real
(
1.
));
return
std
::
abs
(
x
-
y
)
<=
(
tolerance
*
abs_max
);
}
/* ------------------------------------------------------------------------ */
inline
bool
isnan
(
Real
x
)
{
#if defined(__INTEL_COMPILER)
#pragma warning(push)
#pragma warning(disable : 1572)
#endif
// defined(__INTEL_COMPILER)
// x = x return false means x = quiet_NaN
return
!
(
x
==
x
);
#if defined(__INTEL_COMPILER)
#pragma warning(pop)
#endif
// defined(__INTEL_COMPILER)
}
/* ------------------------------------------------------------------------ */
inline
bool
are_vector_equal
(
Int
n
,
Real
*
x
,
Real
*
y
)
{
bool
test
=
true
;
for
(
Int
i
=
0
;
i
<
n
;
++
i
)
{
test
&=
are_float_equal
(
x
[
i
],
y
[
i
]);
}
return
test
;
}
/* ------------------------------------------------------------------------ */
inline
bool
intersects
(
Real
x_min
,
Real
x_max
,
Real
y_min
,
Real
y_max
)
{
return
not
((
x_max
<
y_min
)
or
(
x_min
>
y_max
));
}
/* ------------------------------------------------------------------------ */
inline
bool
is_in_range
(
Real
a
,
Real
x_min
,
Real
x_max
)
{
return
((
a
>=
x_min
)
and
(
a
<=
x_max
));
}
/* ------------------------------------------------------------------------ */
template
<
Int
p
,
typename
T
>
inline
T
pow
(
T
x
)
{
return
(
pow
<
p
-
1
,
T
>
(
x
)
*
x
);
}
template
<>
inline
Int
pow
<
0
,
Int
>
(
Int
/*x*/
)
{
return
(
1
);
}
template
<>
inline
Real
pow
<
0
,
Real
>
(
Real
/*x*/
)
{
return
(
1.
);
}
/* ------------------------------------------------------------------------ */
template
<
class
T
>
template
<
class
Functor
>
T
NewtonRaphson
<
T
>::
solve
(
const
Functor
&
funct
,
const
T
&
x_0
)
{
T
x
=
x_0
;
T
f_x
=
funct
.
f
(
x
);
Int
iter
=
0
;
while
(
std
::
abs
(
f_x
)
>
this
->
tolerance
&&
iter
<
this
->
max_iteration
)
{
x
-=
f_x
/
funct
.
f_prime
(
x
);
f_x
=
funct
.
f
(
x
);
iter
++
;
}
AKANTU_DEBUG_ASSERT
(
iter
<
this
->
max_iteration
,
"Newton Raphson ("
<<
funct
.
name
<<
") solve did not converge in "
<<
this
->
max_iteration
<<
" iterations (tolerance: "
<<
this
->
tolerance
<<
")"
);
return
x
;
}
}
// namespace Math
}
// namespace akantu
Event Timeline
Log In to Comment