Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F95186306
dumper_material_padders.hh
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Fri, Dec 13, 13:44
Size
10 KB
Mime Type
text/x-c
Expires
Sun, Dec 15, 13:44 (2 d)
Engine
blob
Format
Raw Data
Handle
22865321
Attached To
rAKA akantu
dumper_material_padders.hh
View Options
/**
* Copyright (©) 2014-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AKANTU_DUMPER_MATERIAL_PADDERS_HH_
#define AKANTU_DUMPER_MATERIAL_PADDERS_HH_
/* -------------------------------------------------------------------------- */
#include "dumper_padding_helper.hh"
/* -------------------------------------------------------------------------- */
namespace
akantu
{
namespace
dumpers
{
/* ------------------------------------------------------------------------ */
class
MaterialFunctor
{
/* ---------------------------------------------------------------------- */
/* Constructors/Destructors */
/* ---------------------------------------------------------------------- */
public
:
MaterialFunctor
(
const
SolidMechanicsModel
&
model
)
:
model
(
model
),
material_index
(
model
.
getMaterialByElement
()),
nb_data_per_element
(
"nb_data_per_element"
,
model
.
getID
()),
spatial_dimension
(
model
.
getSpatialDimension
())
{}
/* ---------------------------------------------------------------------- */
/* Methods */
/* ---------------------------------------------------------------------- */
/// return the material from the global element index
const
Material
&
getMaterialFromGlobalIndex
(
Element
global_index
)
{
auto
index
=
global_index
.
element
;
auto
material_id
=
material_index
(
global_index
.
type
)(
index
);
const
Material
&
material
=
model
.
getMaterial
(
material_id
);
return
material
;
}
/// return the type of the element from global index
ElementType
getElementTypeFromGlobalIndex
(
// NOLINT(readability-convert-member-functions-to-static)
Element
global_index
)
{
return
global_index
.
type
;
}
protected
:
/* ---------------------------------------------------------------------- */
/* Class Members */
/* ---------------------------------------------------------------------- */
/// all material padders probably need access to solid mechanics model
const
SolidMechanicsModel
&
model
;
/// they also need an access to the map from global ids to material id and
/// local ids
const
ElementTypeMapArray
<
Idx
>
&
material_index
;
/// the number of data per element
const
ElementTypeMapArray
<
Idx
>
nb_data_per_element
;
Int
spatial_dimension
;
};
/* ------------------------------------------------------------------------ */
template
<
class
T
,
class
R
>
class
MaterialPadder
:
public
MaterialFunctor
,
public
PadderGeneric
<
Vector
<
T
>
,
R
>
{
public
:
MaterialPadder
(
const
SolidMechanicsModel
&
model
)
:
MaterialFunctor
(
model
)
{}
};
/* ------------------------------------------------------------------------ */
template
<
Int
spatial_dimension
>
class
StressPadder
:
public
MaterialPadder
<
Real
,
Matrix
<
Real
>>
{
public
:
StressPadder
(
const
SolidMechanicsModel
&
model
)
:
MaterialPadder
<
Real
,
Matrix
<
Real
>>
(
model
)
{
this
->
setPadding
(
3
,
3
);
}
inline
Matrix
<
Real
>
func
(
const
Vector
<
Real
>
&
in
,
Element
global_element_id
)
override
{
auto
nrows
=
spatial_dimension
;
auto
ncols
=
in
.
size
()
/
nrows
;
auto
nb_data
=
in
.
size
()
/
(
nrows
*
nrows
);
Matrix
<
Real
>
stress
=
this
->
pad
(
in
,
nrows
,
ncols
,
nb_data
);
const
Material
&
material
=
this
->
getMaterialFromGlobalIndex
(
global_element_id
);
bool
plane_strain
=
true
;
if
(
spatial_dimension
==
2
)
{
plane_strain
=
!
((
bool
)
material
.
getParam
(
"Plane_Stress"
));
}
if
(
plane_strain
)
{
Real
nu
=
material
.
getParam
(
"nu"
);
for
(
Int
d
=
0
;
d
<
nb_data
;
++
d
)
{
stress
(
2
,
2
+
3
*
d
)
=
nu
*
(
stress
(
0
,
0
+
3
*
d
)
+
stress
(
1
,
1
+
3
*
d
));
}
}
return
stress
;
}
Int
getDim
()
override
{
return
9
;
}
Int
getNbComponent
(
Int
/*old_nb_comp*/
)
override
{
return
this
->
getDim
();
}
};
/* ------------------------------------------------------------------------ */
template
<
Int
spatial_dimension
>
class
StrainPadder
:
public
MaterialFunctor
,
public
PadderGeneric
<
Matrix
<
Real
>
,
Matrix
<
Real
>>
{
public
:
StrainPadder
(
const
SolidMechanicsModel
&
model
)
:
MaterialFunctor
(
model
)
{
this
->
setPadding
(
3
,
3
);
}
inline
Matrix
<
Real
>
func
(
const
Matrix
<
Real
>
&
in
,
Element
global_element_id
)
override
{
auto
nrows
=
spatial_dimension
;
auto
nb_data
=
in
.
size
()
/
(
nrows
*
nrows
);
Matrix
<
Real
>
strain
=
this
->
pad
(
in
,
nb_data
);
const
Material
&
material
=
this
->
getMaterialFromGlobalIndex
(
global_element_id
);
bool
plane_stress
=
material
.
getParam
(
"Plane_Stress"
);
if
(
plane_stress
)
{
Real
nu
=
material
.
getParam
(
"nu"
);
for
(
Int
d
=
0
;
d
<
nb_data
;
++
d
)
{
strain
(
2
,
2
+
3
*
d
)
=
nu
/
(
nu
-
1
)
*
(
strain
(
0
,
0
+
3
*
d
)
+
strain
(
1
,
1
+
3
*
d
));
}
}
return
strain
;
}
Int
getDim
()
override
{
return
9
;
}
Int
getNbComponent
(
Int
/*old_nb_comp*/
)
override
{
return
this
->
getDim
();
}
};
/* ------------------------------------------------------------------------ */
template
<
bool
green_strain
>
class
ComputeStrain
:
public
MaterialFunctor
,
public
ComputeFunctor
<
Vector
<
Real
>
,
Matrix
<
Real
>>
{
public
:
ComputeStrain
(
const
SolidMechanicsModel
&
model
)
:
MaterialFunctor
(
model
)
{}
inline
Matrix
<
Real
>
func
(
const
Vector
<
Real
>
&
in
,
Element
/*global_element_id*/
)
override
{
auto
nrows
=
spatial_dimension
;
auto
ncols
=
in
.
size
()
/
nrows
;
auto
nb_data
=
in
.
size
()
/
(
nrows
*
nrows
);
Matrix
<
Real
>
ret_all_strain
(
nrows
,
ncols
);
Tensor3Proxy
<
const
Real
>
all_grad_u
(
in
.
data
(),
nrows
,
nrows
,
nb_data
);
Tensor3Proxy
<
Real
>
all_strain
(
ret_all_strain
.
data
(),
nrows
,
nrows
,
nb_data
);
for
(
Int
d
=
0
;
d
<
nb_data
;
++
d
)
{
auto
&&
grad_u
=
all_grad_u
(
d
);
auto
&&
strain
=
all_strain
(
d
);
if
(
spatial_dimension
==
2
)
{
if
(
green_strain
)
{
strain
=
Material
::
gradUToE
<
2
>
(
grad_u
);
}
else
{
strain
=
Material
::
gradUToEpsilon
<
2
>
(
grad_u
);
}
}
else
if
(
spatial_dimension
==
3
)
{
if
(
green_strain
)
{
strain
=
Material
::
gradUToE
<
3
>
(
grad_u
);
}
else
{
strain
=
Material
::
gradUToEpsilon
<
3
>
(
grad_u
);
}
}
}
return
ret_all_strain
;
}
Int
getDim
()
override
{
return
spatial_dimension
*
spatial_dimension
;
}
Int
getNbComponent
(
Int
/*old_nb_comp*/
)
override
{
return
this
->
getDim
();
}
};
/* ------------------------------------------------------------------------ */
template
<
bool
green_strain
>
class
ComputePrincipalStrain
:
public
MaterialFunctor
,
public
ComputeFunctor
<
Vector
<
Real
>
,
Matrix
<
Real
>>
{
public
:
ComputePrincipalStrain
(
const
SolidMechanicsModel
&
model
)
:
MaterialFunctor
(
model
)
{}
inline
Matrix
<
Real
>
func
(
const
Vector
<
Real
>
&
in
,
Element
/*global_element_id*/
)
override
{
auto
nrows
=
spatial_dimension
;
auto
nb_data
=
in
.
size
()
/
(
nrows
*
nrows
);
Matrix
<
Real
>
ret_all_strain
(
nrows
,
nb_data
);
Tensor3Proxy
<
const
Real
>
all_grad_u
(
in
.
data
(),
nrows
,
nrows
,
nb_data
);
Matrix
<
Real
>
strain
(
nrows
,
nrows
);
for
(
Int
d
=
0
;
d
<
nb_data
;
++
d
)
{
Matrix
<
Real
>
grad_u
=
all_grad_u
(
d
);
tuple_dispatch
<
AllSpatialDimensions
>
(
[
&
grad_u
,
&
strain
](
auto
&&
dim_t
)
{
constexpr
auto
dim
=
aka
::
decay_v
<
decltype
(
dim_t
)
>
;
if
(
green_strain
)
{
Material
::
gradUToE
<
dim
>
(
grad_u
,
strain
);
}
else
{
strain
=
Material
::
gradUToEpsilon
<
dim
>
(
grad_u
);
}
},
spatial_dimension
);
auto
&&
principal_strain
=
ret_all_strain
(
d
);
strain
.
eig
(
principal_strain
);
}
return
ret_all_strain
;
}
Int
getDim
()
override
{
return
spatial_dimension
;
}
Int
getNbComponent
(
Int
/*old_nb_comp*/
)
override
{
return
this
->
getDim
();
}
};
/* ------------------------------------------------------------------------ */
class
ComputeVonMisesStress
:
public
MaterialFunctor
,
public
ComputeFunctor
<
Vector
<
Real
>
,
Vector
<
Real
>>
{
public
:
ComputeVonMisesStress
(
const
SolidMechanicsModel
&
model
)
:
MaterialFunctor
(
model
)
{}
inline
Vector
<
Real
>
func
(
const
Vector
<
Real
>
&
in
,
Element
/*global_element_id*/
)
override
{
auto
nrows
=
spatial_dimension
;
auto
nb_data
=
in
.
size
()
/
(
nrows
*
nrows
);
Vector
<
Real
>
von_mises_stress
(
nb_data
);
Matrix
<
Real
>
deviatoric_stress
(
3
,
3
);
for
(
Int
d
=
0
;
d
<
nb_data
;
++
d
)
{
MatrixProxy
<
const
Real
>
cauchy_stress
(
in
.
data
()
+
d
*
nrows
*
nrows
,
nrows
,
nrows
);
von_mises_stress
(
d
)
=
Material
::
stressToVonMises
(
cauchy_stress
);
}
return
von_mises_stress
;
}
Int
getDim
()
override
{
return
1
;
}
Int
getNbComponent
(
Int
/*old_nb_comp*/
)
override
{
return
this
->
getDim
();
}
};
/* ------------------------------------------------------------------------ */
}
// namespace dumpers
}
// namespace akantu
#endif
/* AKANTU_DUMPER_MATERIAL_PADDERS_HH_ */
Event Timeline
Log In to Comment