Page MenuHomec4science

dumper_material_padders.hh
No OneTemporary

File Metadata

Created
Fri, Dec 13, 13:44

dumper_material_padders.hh

/**
* Copyright (©) 2014-2023 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* This file is part of Akantu
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef AKANTU_DUMPER_MATERIAL_PADDERS_HH_
#define AKANTU_DUMPER_MATERIAL_PADDERS_HH_
/* -------------------------------------------------------------------------- */
#include "dumper_padding_helper.hh"
/* -------------------------------------------------------------------------- */
namespace akantu {
namespace dumpers {
/* ------------------------------------------------------------------------ */
class MaterialFunctor {
/* ---------------------------------------------------------------------- */
/* Constructors/Destructors */
/* ---------------------------------------------------------------------- */
public:
MaterialFunctor(const SolidMechanicsModel & model)
: model(model), material_index(model.getMaterialByElement()),
nb_data_per_element("nb_data_per_element", model.getID()),
spatial_dimension(model.getSpatialDimension()) {}
/* ---------------------------------------------------------------------- */
/* Methods */
/* ---------------------------------------------------------------------- */
/// return the material from the global element index
const Material & getMaterialFromGlobalIndex(Element global_index) {
auto index = global_index.element;
auto material_id = material_index(global_index.type)(index);
const Material & material = model.getMaterial(material_id);
return material;
}
/// return the type of the element from global index
ElementType
getElementTypeFromGlobalIndex( // NOLINT(readability-convert-member-functions-to-static)
Element global_index) {
return global_index.type;
}
protected:
/* ---------------------------------------------------------------------- */
/* Class Members */
/* ---------------------------------------------------------------------- */
/// all material padders probably need access to solid mechanics model
const SolidMechanicsModel & model;
/// they also need an access to the map from global ids to material id and
/// local ids
const ElementTypeMapArray<Idx> & material_index;
/// the number of data per element
const ElementTypeMapArray<Idx> nb_data_per_element;
Int spatial_dimension;
};
/* ------------------------------------------------------------------------ */
template <class T, class R>
class MaterialPadder : public MaterialFunctor,
public PadderGeneric<Vector<T>, R> {
public:
MaterialPadder(const SolidMechanicsModel & model)
: MaterialFunctor(model) {}
};
/* ------------------------------------------------------------------------ */
template <Int spatial_dimension>
class StressPadder : public MaterialPadder<Real, Matrix<Real>> {
public:
StressPadder(const SolidMechanicsModel & model)
: MaterialPadder<Real, Matrix<Real>>(model) {
this->setPadding(3, 3);
}
inline Matrix<Real> func(const Vector<Real> & in,
Element global_element_id) override {
auto nrows = spatial_dimension;
auto ncols = in.size() / nrows;
auto nb_data = in.size() / (nrows * nrows);
Matrix<Real> stress = this->pad(in, nrows, ncols, nb_data);
const Material & material =
this->getMaterialFromGlobalIndex(global_element_id);
bool plane_strain = true;
if (spatial_dimension == 2) {
plane_strain = !((bool)material.getParam("Plane_Stress"));
}
if (plane_strain) {
Real nu = material.getParam("nu");
for (Int d = 0; d < nb_data; ++d) {
stress(2, 2 + 3 * d) =
nu * (stress(0, 0 + 3 * d) + stress(1, 1 + 3 * d));
}
}
return stress;
}
Int getDim() override { return 9; }
Int getNbComponent(Int /*old_nb_comp*/) override { return this->getDim(); }
};
/* ------------------------------------------------------------------------ */
template <Int spatial_dimension>
class StrainPadder : public MaterialFunctor,
public PadderGeneric<Matrix<Real>, Matrix<Real>> {
public:
StrainPadder(const SolidMechanicsModel & model) : MaterialFunctor(model) {
this->setPadding(3, 3);
}
inline Matrix<Real> func(const Matrix<Real> & in,
Element global_element_id) override {
auto nrows = spatial_dimension;
auto nb_data = in.size() / (nrows * nrows);
Matrix<Real> strain = this->pad(in, nb_data);
const Material & material =
this->getMaterialFromGlobalIndex(global_element_id);
bool plane_stress = material.getParam("Plane_Stress");
if (plane_stress) {
Real nu = material.getParam("nu");
for (Int d = 0; d < nb_data; ++d) {
strain(2, 2 + 3 * d) =
nu / (nu - 1) * (strain(0, 0 + 3 * d) + strain(1, 1 + 3 * d));
}
}
return strain;
}
Int getDim() override { return 9; }
Int getNbComponent(Int /*old_nb_comp*/) override { return this->getDim(); }
};
/* ------------------------------------------------------------------------ */
template <bool green_strain>
class ComputeStrain : public MaterialFunctor,
public ComputeFunctor<Vector<Real>, Matrix<Real>> {
public:
ComputeStrain(const SolidMechanicsModel & model) : MaterialFunctor(model) {}
inline Matrix<Real> func(const Vector<Real> & in,
Element /*global_element_id*/) override {
auto nrows = spatial_dimension;
auto ncols = in.size() / nrows;
auto nb_data = in.size() / (nrows * nrows);
Matrix<Real> ret_all_strain(nrows, ncols);
Tensor3Proxy<const Real> all_grad_u(in.data(), nrows, nrows, nb_data);
Tensor3Proxy<Real> all_strain(ret_all_strain.data(), nrows, nrows,
nb_data);
for (Int d = 0; d < nb_data; ++d) {
auto && grad_u = all_grad_u(d);
auto && strain = all_strain(d);
if (spatial_dimension == 2) {
if (green_strain) {
strain = Material::gradUToE<2>(grad_u);
} else {
strain = Material::gradUToEpsilon<2>(grad_u);
}
} else if (spatial_dimension == 3) {
if (green_strain) {
strain = Material::gradUToE<3>(grad_u);
} else {
strain = Material::gradUToEpsilon<3>(grad_u);
}
}
}
return ret_all_strain;
}
Int getDim() override { return spatial_dimension * spatial_dimension; }
Int getNbComponent(Int /*old_nb_comp*/) override { return this->getDim(); }
};
/* ------------------------------------------------------------------------ */
template <bool green_strain>
class ComputePrincipalStrain
: public MaterialFunctor,
public ComputeFunctor<Vector<Real>, Matrix<Real>> {
public:
ComputePrincipalStrain(const SolidMechanicsModel & model)
: MaterialFunctor(model) {}
inline Matrix<Real> func(const Vector<Real> & in,
Element /*global_element_id*/) override {
auto nrows = spatial_dimension;
auto nb_data = in.size() / (nrows * nrows);
Matrix<Real> ret_all_strain(nrows, nb_data);
Tensor3Proxy<const Real> all_grad_u(in.data(), nrows, nrows, nb_data);
Matrix<Real> strain(nrows, nrows);
for (Int d = 0; d < nb_data; ++d) {
Matrix<Real> grad_u = all_grad_u(d);
tuple_dispatch<AllSpatialDimensions>(
[&grad_u, &strain](auto && dim_t) {
constexpr auto dim = aka::decay_v<decltype(dim_t)>;
if (green_strain) {
Material::gradUToE<dim>(grad_u, strain);
} else {
strain = Material::gradUToEpsilon<dim>(grad_u);
}
},
spatial_dimension);
auto && principal_strain = ret_all_strain(d);
strain.eig(principal_strain);
}
return ret_all_strain;
}
Int getDim() override { return spatial_dimension; }
Int getNbComponent(Int /*old_nb_comp*/) override { return this->getDim(); }
};
/* ------------------------------------------------------------------------ */
class ComputeVonMisesStress
: public MaterialFunctor,
public ComputeFunctor<Vector<Real>, Vector<Real>> {
public:
ComputeVonMisesStress(const SolidMechanicsModel & model)
: MaterialFunctor(model) {}
inline Vector<Real> func(const Vector<Real> & in,
Element /*global_element_id*/) override {
auto nrows = spatial_dimension;
auto nb_data = in.size() / (nrows * nrows);
Vector<Real> von_mises_stress(nb_data);
Matrix<Real> deviatoric_stress(3, 3);
for (Int d = 0; d < nb_data; ++d) {
MatrixProxy<const Real> cauchy_stress(in.data() + d * nrows * nrows,
nrows, nrows);
von_mises_stress(d) = Material::stressToVonMises(cauchy_stress);
}
return von_mises_stress;
}
Int getDim() override { return 1; }
Int getNbComponent(Int /*old_nb_comp*/) override { return this->getDim(); }
};
/* ------------------------------------------------------------------------ */
} // namespace dumpers
} // namespace akantu
#endif /* AKANTU_DUMPER_MATERIAL_PADDERS_HH_ */

Event Timeline