Page Menu
Home
c4science
Search
Configure Global Search
Log In
Files
F94246279
material.cc
No One
Temporary
Actions
Download File
Edit File
Delete File
View Transforms
Subscribe
Mute Notifications
Award Token
Subscribers
None
File Metadata
Details
File Info
Storage
Attached
Created
Thu, Dec 5, 02:28
Size
60 KB
Mime Type
text/x-c
Expires
Sat, Dec 7, 02:28 (2 d)
Engine
blob
Format
Raw Data
Handle
22495421
Attached To
rAKA akantu
material.cc
View Options
/**
* @file material.cc
*
* @author Aurelia Isabel Cuba Ramos <aurelia.cubaramos@epfl.ch>
* @author Marco Vocialta <marco.vocialta@epfl.ch>
* @author Nicolas Richart <nicolas.richart@epfl.ch>
* @author Daniel Pino Muñoz <daniel.pinomunoz@epfl.ch>
*
* @date creation: Tue Jul 27 2010
* @date last modification: Tue Sep 16 2014
*
* @brief Implementation of the common part of the material class
*
* @section LICENSE
*
* Copyright (©) 2010-2012, 2014 EPFL (Ecole Polytechnique Fédérale de Lausanne)
* Laboratory (LSMS - Laboratoire de Simulation en Mécanique des Solides)
*
* Akantu is free software: you can redistribute it and/or modify it under the
* terms of the GNU Lesser General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option) any
* later version.
*
* Akantu is distributed in the hope that it will be useful, but WITHOUT ANY
* WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR
* A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more
* details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with Akantu. If not, see <http://www.gnu.org/licenses/>.
*
*/
/* -------------------------------------------------------------------------- */
#include "material.hh"
#include "solid_mechanics_model.hh"
#include "sparse_matrix.hh"
#include "dof_synchronizer.hh"
/* -------------------------------------------------------------------------- */
__BEGIN_AKANTU__
/* -------------------------------------------------------------------------- */
Material
::
Material
(
SolidMechanicsModel
&
model
,
const
ID
&
id
)
:
Memory
(
id
,
model
.
getMemoryID
()),
Parsable
(
_st_material
,
id
),
is_init
(
false
),
fem
(
&
(
model
.
getFEEngine
())),
finite_deformation
(
false
),
name
(
""
),
model
(
&
model
),
spatial_dimension
(
this
->
model
->
getSpatialDimension
()),
element_filter
(
"element_filter"
,
id
,
this
->
memory_id
),
stress
(
"stress"
,
*
this
),
eigengradu
(
"eigen_grad_u"
,
*
this
),
gradu
(
"grad_u"
,
*
this
),
green_strain
(
"green_strain"
,
*
this
),
piola_kirchhoff_2
(
"piola_kirchhoff_2"
,
*
this
),
potential_energy
(
"potential_energy"
,
*
this
),
is_non_local
(
false
),
use_previous_stress
(
false
),
use_previous_gradu
(
false
),
interpolation_inverse_coordinates
(
"interpolation inverse coordinates"
,
*
this
),
interpolation_points_matrices
(
"interpolation points matrices"
,
*
this
)
{
AKANTU_DEBUG_IN
();
/// for each connectivity types allocate the element filer array of the material
model
.
getMesh
().
initElementTypeMapArray
(
element_filter
,
1
,
spatial_dimension
,
false
,
_ek_regular
);
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Material
::
Material
(
SolidMechanicsModel
&
model
,
UInt
dim
,
const
Mesh
&
mesh
,
FEEngine
&
fe_engine
,
const
ID
&
id
)
:
Memory
(
id
,
model
.
getMemoryID
()),
Parsable
(
_st_material
,
id
),
is_init
(
false
),
fem
(
&
(
model
.
getFEEngine
())),
finite_deformation
(
false
),
name
(
""
),
model
(
&
model
),
spatial_dimension
(
dim
),
element_filter
(
"element_filter"
,
id
,
this
->
memory_id
),
stress
(
"stress"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
eigengradu
(
"eigen_grad_u"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
gradu
(
"gradu"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
green_strain
(
"green_strain"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
piola_kirchhoff_2
(
"poila_kirchhoff_2"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
potential_energy
(
"potential_energy"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
is_non_local
(
false
),
use_previous_stress
(
false
),
use_previous_gradu
(
false
),
interpolation_inverse_coordinates
(
"interpolation inverse_coordinates"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
),
interpolation_points_matrices
(
"interpolation points matrices"
,
*
this
,
dim
,
fe_engine
,
this
->
element_filter
)
{
AKANTU_DEBUG_IN
();
mesh
.
initElementTypeMapArray
(
element_filter
,
1
,
spatial_dimension
,
false
,
_ek_regular
);
this
->
initialize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Material
::~
Material
()
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
initialize
()
{
registerParam
(
"rho"
,
rho
,
Real
(
0.
)
,
_pat_parsable
|
_pat_modifiable
,
"Density"
);
registerParam
(
"name"
,
name
,
std
::
string
(),
_pat_parsable
|
_pat_readable
);
registerParam
(
"finite_deformation"
,
finite_deformation
,
false
,
_pat_parsable
|
_pat_readable
,
"Is finite deformation"
);
registerParam
(
"inelastic_deformation"
,
inelastic_deformation
,
false
,
_pat_internal
,
"Is inelastic deformation"
);
/// allocate gradu stress for local elements
eigengradu
.
initialize
(
spatial_dimension
*
spatial_dimension
);
gradu
.
initialize
(
spatial_dimension
*
spatial_dimension
);
stress
.
initialize
(
spatial_dimension
*
spatial_dimension
);
potential_energy
.
initialize
(
1
);
this
->
model
->
registerEventHandler
(
*
this
);
}
/* -------------------------------------------------------------------------- */
void
Material
::
initMaterial
()
{
AKANTU_DEBUG_IN
();
if
(
finite_deformation
)
{
this
->
piola_kirchhoff_2
.
initialize
(
spatial_dimension
*
spatial_dimension
);
if
(
use_previous_stress
)
this
->
piola_kirchhoff_2
.
initializeHistory
();
this
->
green_strain
.
initialize
(
spatial_dimension
*
spatial_dimension
);
}
if
(
use_previous_stress
)
this
->
stress
.
initializeHistory
();
if
(
use_previous_gradu
)
this
->
gradu
.
initializeHistory
();
for
(
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
iterator
it
=
internal_vectors_real
.
begin
();
it
!=
internal_vectors_real
.
end
();
++
it
)
it
->
second
->
resize
();
for
(
std
::
map
<
ID
,
InternalField
<
UInt
>
*>::
iterator
it
=
internal_vectors_uint
.
begin
();
it
!=
internal_vectors_uint
.
end
();
++
it
)
it
->
second
->
resize
();
for
(
std
::
map
<
ID
,
InternalField
<
bool
>
*>::
iterator
it
=
internal_vectors_bool
.
begin
();
it
!=
internal_vectors_bool
.
end
();
++
it
)
it
->
second
->
resize
();
is_init
=
true
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
savePreviousState
()
{
AKANTU_DEBUG_IN
();
for
(
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
iterator
it
=
internal_vectors_real
.
begin
();
it
!=
internal_vectors_real
.
end
();
++
it
)
{
if
(
it
->
second
->
hasHistory
())
it
->
second
->
saveCurrentValues
();
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/**
* Compute the residual by assembling @f$\int_{e} \sigma_e \frac{\partial
* \varphi}{\partial X} dX @f$
*
* @param[in] displacements nodes displacements
* @param[in] ghost_type compute the residual for _ghost or _not_ghost element
*/
void
Material
::
updateResidual
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
computeAllStresses
(
ghost_type
);
assembleResidual
(
ghost_type
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
assembleResidual
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
model
->
getSpatialDimension
();
if
(
!
finite_deformation
){
Array
<
Real
>
&
residual
=
const_cast
<
Array
<
Real
>
&>
(
model
->
getResidual
());
Mesh
&
mesh
=
fem
->
getMesh
();
Mesh
::
type_iterator
it
=
element_filter
.
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
element_filter
.
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
{
Array
<
UInt
>
&
elem_filter
=
element_filter
(
*
it
,
ghost_type
);
UInt
nb_element
=
elem_filter
.
getSize
();
if
(
nb_element
)
{
const
Array
<
Real
>
&
shapes_derivatives
=
fem
->
getShapesDerivatives
(
*
it
,
ghost_type
);
UInt
size_of_shapes_derivatives
=
shapes_derivatives
.
getNbComponent
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
*
it
);
UInt
nb_quadrature_points
=
fem
->
getNbIntegrationPoints
(
*
it
,
ghost_type
);
/// compute @f$\sigma \frac{\partial \varphi}{\partial X}@f$ by @f$\mathbf{B}^t \mathbf{\sigma}_q@f$
Array
<
Real
>
*
sigma_dphi_dx
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
size_of_shapes_derivatives
,
"sigma_x_dphi_/_dX"
);
Array
<
Real
>
*
shapesd_filtered
=
new
Array
<
Real
>
(
0
,
size_of_shapes_derivatives
,
"filtered shapesd"
);
FEEngine
::
filterElementalData
(
mesh
,
shapes_derivatives
,
*
shapesd_filtered
,
*
it
,
ghost_type
,
elem_filter
);
Array
<
Real
>
&
stress_vect
=
this
->
stress
(
*
it
,
ghost_type
);
Array
<
Real
>::
matrix_iterator
sigma
=
stress_vect
.
begin
(
spatial_dimension
,
spatial_dimension
);
Array
<
Real
>::
matrix_iterator
B
=
shapesd_filtered
->
begin
(
spatial_dimension
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
Bt_sigma_it
=
sigma_dphi_dx
->
begin
(
spatial_dimension
,
nb_nodes_per_element
);
for
(
UInt
q
=
0
;
q
<
nb_element
*
nb_quadrature_points
;
++
q
,
++
sigma
,
++
B
,
++
Bt_sigma_it
)
Bt_sigma_it
->
mul
<
false
,
false
>
(
*
sigma
,
*
B
);
delete
shapesd_filtered
;
/**
* compute @f$\int \sigma * \frac{\partial \varphi}{\partial X}dX@f$ by @f$ \sum_q \mathbf{B}^t
* \mathbf{\sigma}_q \overline w_q J_q@f$
*/
Array
<
Real
>
*
int_sigma_dphi_dx
=
new
Array
<
Real
>
(
nb_element
,
nb_nodes_per_element
*
spatial_dimension
,
"int_sigma_x_dphi_/_dX"
);
fem
->
integrate
(
*
sigma_dphi_dx
,
*
int_sigma_dphi_dx
,
size_of_shapes_derivatives
,
*
it
,
ghost_type
,
elem_filter
);
delete
sigma_dphi_dx
;
/// assemble
fem
->
assembleArray
(
*
int_sigma_dphi_dx
,
residual
,
model
->
getDOFSynchronizer
().
getLocalDOFEquationNumbers
(),
residual
.
getNbComponent
(),
*
it
,
ghost_type
,
elem_filter
,
-
1
);
delete
int_sigma_dphi_dx
;
}
}
}
else
{
switch
(
spatial_dimension
){
case
1
:
this
->
assembleResidual
<
1
>
(
ghost_type
);
break
;
case
2
:
this
->
assembleResidual
<
2
>
(
ghost_type
);
break
;
case
3
:
this
->
assembleResidual
<
3
>
(
ghost_type
);
break
;
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/**
* Compute the stress from the gradu
*
* @param[in] current_position nodes postition + displacements
* @param[in] ghost_type compute the residual for _ghost or _not_ghost element
*/
void
Material
::
computeAllStresses
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
model
->
getSpatialDimension
();
Mesh
::
type_iterator
it
=
fem
->
getMesh
().
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
fem
->
getMesh
().
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
{
Array
<
UInt
>
&
elem_filter
=
element_filter
(
*
it
,
ghost_type
);
if
(
elem_filter
.
getSize
()
==
0
)
continue
;
Array
<
Real
>
&
gradu_vect
=
gradu
(
*
it
,
ghost_type
);
/// compute @f$\nabla u@f$
fem
->
gradientOnIntegrationPoints
(
model
->
getDisplacement
(),
gradu_vect
,
spatial_dimension
,
*
it
,
ghost_type
,
elem_filter
);
gradu_vect
-=
eigengradu
(
*
it
,
ghost_type
);
/// compute @f$\mathbf{\sigma}_q@f$ from @f$\nabla u@f$
computeStress
(
*
it
,
ghost_type
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
computeAllCauchyStresses
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_ASSERT
(
finite_deformation
,
"The Cauchy stress can only be computed if you are working in finite deformation."
);
//resizeInternalArray(stress);
Mesh
::
type_iterator
it
=
fem
->
getMesh
().
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
fem
->
getMesh
().
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
switch
(
spatial_dimension
){
case
1
:
this
->
computeCauchyStress
<
1
>
(
*
it
,
ghost_type
);
break
;
case
2
:
this
->
computeCauchyStress
<
2
>
(
*
it
,
ghost_type
);
break
;
case
3
:
this
->
computeCauchyStress
<
3
>
(
*
it
,
ghost_type
);
break
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
Material
::
computeCauchyStress
(
ElementType
el_type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
Array
<
Real
>::
matrix_iterator
gradu_it
=
this
->
gradu
(
el_type
,
ghost_type
).
begin
(
dim
,
dim
);
Array
<
Real
>::
matrix_iterator
gradu_end
=
this
->
gradu
(
el_type
,
ghost_type
).
end
(
dim
,
dim
);
Array
<
Real
>::
matrix_iterator
piola_it
=
this
->
piola_kirchhoff_2
(
el_type
,
ghost_type
).
begin
(
dim
,
dim
);
Array
<
Real
>::
matrix_iterator
stress_it
=
this
->
stress
(
el_type
,
ghost_type
).
begin
(
dim
,
dim
);
Matrix
<
Real
>
F_tensor
(
dim
,
dim
);
for
(;
gradu_it
!=
gradu_end
;
++
gradu_it
,
++
piola_it
,
++
stress_it
)
{
Matrix
<
Real
>
&
grad_u
=
*
gradu_it
;
Matrix
<
Real
>
&
piola
=
*
piola_it
;
Matrix
<
Real
>
&
sigma
=
*
stress_it
;
gradUToF
<
dim
>
(
grad_u
,
F_tensor
);
this
->
computeCauchyStressOnQuad
<
dim
>
(
F_tensor
,
piola
,
sigma
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
setToSteadyState
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
Array
<
Real
>
&
displacement
=
model
->
getDisplacement
();
//resizeInternalArray(gradu);
UInt
spatial_dimension
=
model
->
getSpatialDimension
();
Mesh
::
type_iterator
it
=
fem
->
getMesh
().
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
fem
->
getMesh
().
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
{
Array
<
UInt
>
&
elem_filter
=
element_filter
(
*
it
,
ghost_type
);
Array
<
Real
>
&
gradu_vect
=
gradu
(
*
it
,
ghost_type
);
/// compute @f$\nabla u@f$
fem
->
gradientOnIntegrationPoints
(
displacement
,
gradu_vect
,
spatial_dimension
,
*
it
,
ghost_type
,
elem_filter
);
setToSteadyState
(
*
it
,
ghost_type
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
/**
* Compute the stiffness matrix by assembling @f$\int_{\omega} B^t \times D
* \times B d\omega @f$
*
* @param[in] current_position nodes postition + displacements
* @param[in] ghost_type compute the residual for _ghost or _not_ghost element
*/
void
Material
::
assembleStiffnessMatrix
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
model
->
getSpatialDimension
();
Mesh
::
type_iterator
it
=
element_filter
.
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
element_filter
.
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
{
if
(
finite_deformation
){
switch
(
spatial_dimension
)
{
case
1
:
{
assembleStiffnessMatrixNL
<
1
>
(
*
it
,
ghost_type
);
assembleStiffnessMatrixL2
<
1
>
(
*
it
,
ghost_type
);
break
;
}
case
2
:
{
assembleStiffnessMatrixNL
<
2
>
(
*
it
,
ghost_type
);
assembleStiffnessMatrixL2
<
2
>
(
*
it
,
ghost_type
);
break
;
}
case
3
:
{
assembleStiffnessMatrixNL
<
3
>
(
*
it
,
ghost_type
);
assembleStiffnessMatrixL2
<
3
>
(
*
it
,
ghost_type
);
break
;
}
}
}
else
{
switch
(
spatial_dimension
)
{
case
1
:
{
assembleStiffnessMatrix
<
1
>
(
*
it
,
ghost_type
);
break
;
}
case
2
:
{
assembleStiffnessMatrix
<
2
>
(
*
it
,
ghost_type
);
break
;
}
case
3
:
{
assembleStiffnessMatrix
<
3
>
(
*
it
,
ghost_type
);
break
;
}
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
Material
::
assembleStiffnessMatrix
(
const
ElementType
&
type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
Array
<
UInt
>
&
elem_filter
=
element_filter
(
type
,
ghost_type
);
if
(
elem_filter
.
getSize
())
{
SparseMatrix
&
K
=
const_cast
<
SparseMatrix
&>
(
model
->
getStiffnessMatrix
());
const
Array
<
Real
>
&
shapes_derivatives
=
fem
->
getShapesDerivatives
(
type
,
ghost_type
);
Array
<
Real
>
&
gradu_vect
=
gradu
(
type
,
ghost_type
);
UInt
nb_element
=
elem_filter
.
getSize
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
nb_quadrature_points
=
fem
->
getNbIntegrationPoints
(
type
,
ghost_type
);
gradu_vect
.
resize
(
nb_quadrature_points
*
nb_element
);
fem
->
gradientOnIntegrationPoints
(
model
->
getDisplacement
(),
gradu_vect
,
dim
,
type
,
ghost_type
,
elem_filter
);
UInt
tangent_size
=
getTangentStiffnessVoigtSize
(
dim
);
Array
<
Real
>
*
tangent_stiffness_matrix
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
tangent_size
*
tangent_size
,
"tangent_stiffness_matrix"
);
tangent_stiffness_matrix
->
clear
();
computeTangentModuli
(
type
,
*
tangent_stiffness_matrix
,
ghost_type
);
Array
<
Real
>
*
shapesd_filtered
=
new
Array
<
Real
>
(
0
,
dim
*
nb_nodes_per_element
,
"filtered shapesd"
);
FEEngine
::
filterElementalData
(
fem
->
getMesh
(),
shapes_derivatives
,
*
shapesd_filtered
,
type
,
ghost_type
,
elem_filter
);
/// compute @f$\mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
UInt
bt_d_b_size
=
dim
*
nb_nodes_per_element
;
Array
<
Real
>
*
bt_d_b
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
bt_d_b_size
*
bt_d_b_size
,
"B^t*D*B"
);
Matrix
<
Real
>
B
(
tangent_size
,
dim
*
nb_nodes_per_element
);
Matrix
<
Real
>
Bt_D
(
dim
*
nb_nodes_per_element
,
tangent_size
);
Array
<
Real
>::
matrix_iterator
shapes_derivatives_filtered_it
=
shapesd_filtered
->
begin
(
dim
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
Bt_D_B_it
=
bt_d_b
->
begin
(
dim
*
nb_nodes_per_element
,
dim
*
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
D_it
=
tangent_stiffness_matrix
->
begin
(
tangent_size
,
tangent_size
);
Array
<
Real
>::
matrix_iterator
D_end
=
tangent_stiffness_matrix
->
end
(
tangent_size
,
tangent_size
);
for
(;
D_it
!=
D_end
;
++
D_it
,
++
Bt_D_B_it
,
++
shapes_derivatives_filtered_it
)
{
Matrix
<
Real
>
&
D
=
*
D_it
;
Matrix
<
Real
>
&
Bt_D_B
=
*
Bt_D_B_it
;
VoigtHelper
<
dim
>::
transferBMatrixToSymVoigtBMatrix
(
*
shapes_derivatives_filtered_it
,
B
,
nb_nodes_per_element
);
Bt_D
.
mul
<
true
,
false
>
(
B
,
D
);
Bt_D_B
.
mul
<
false
,
false
>
(
Bt_D
,
B
);
}
delete
tangent_stiffness_matrix
;
delete
shapesd_filtered
;
/// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
Array
<
Real
>
*
K_e
=
new
Array
<
Real
>
(
nb_element
,
bt_d_b_size
*
bt_d_b_size
,
"K_e"
);
fem
->
integrate
(
*
bt_d_b
,
*
K_e
,
bt_d_b_size
*
bt_d_b_size
,
type
,
ghost_type
,
elem_filter
);
delete
bt_d_b
;
fem
->
assembleMatrix
(
*
K_e
,
K
,
spatial_dimension
,
type
,
ghost_type
,
elem_filter
);
delete
K_e
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
Material
::
assembleStiffnessMatrixNL
(
const
ElementType
&
type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
SparseMatrix
&
K
=
const_cast
<
SparseMatrix
&>
(
model
->
getStiffnessMatrix
());
const
Array
<
Real
>
&
shapes_derivatives
=
fem
->
getShapesDerivatives
(
type
,
ghost_type
);
Array
<
UInt
>
&
elem_filter
=
element_filter
(
type
,
ghost_type
);
//Array<Real> & gradu_vect = delta_gradu(type, ghost_type);
UInt
nb_element
=
elem_filter
.
getSize
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
nb_quadrature_points
=
fem
->
getNbIntegrationPoints
(
type
,
ghost_type
);
//gradu_vect.resize(nb_quadrature_points * nb_element);
// fem->gradientOnIntegrationPoints(model->getIncrement(), gradu_vect,
// dim, type, ghost_type, &elem_filter);
Array
<
Real
>
*
shapes_derivatives_filtered
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
dim
*
nb_nodes_per_element
,
"shapes derivatives filtered"
);
Array
<
Real
>::
const_matrix_iterator
shapes_derivatives_it
=
shapes_derivatives
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
shapes_derivatives_filtered_it
=
shapes_derivatives_filtered
->
begin
(
spatial_dimension
,
nb_nodes_per_element
);
UInt
*
elem_filter_val
=
elem_filter
.
storage
();
for
(
UInt
e
=
0
;
e
<
nb_element
;
++
e
,
++
elem_filter_val
)
for
(
UInt
q
=
0
;
q
<
nb_quadrature_points
;
++
q
,
++
shapes_derivatives_filtered_it
)
*
shapes_derivatives_filtered_it
=
shapes_derivatives_it
[
*
elem_filter_val
*
nb_quadrature_points
+
q
];
/// compute @f$\mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
UInt
bt_s_b_size
=
dim
*
nb_nodes_per_element
;
Array
<
Real
>
*
bt_s_b
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
bt_s_b_size
*
bt_s_b_size
,
"B^t*D*B"
);
UInt
piola_matrix_size
=
getCauchyStressMatrixSize
(
dim
);
Matrix
<
Real
>
B
(
piola_matrix_size
,
bt_s_b_size
);
Matrix
<
Real
>
Bt_S
(
bt_s_b_size
,
piola_matrix_size
);
Matrix
<
Real
>
S
(
piola_matrix_size
,
piola_matrix_size
);
shapes_derivatives_filtered_it
=
shapes_derivatives_filtered
->
begin
(
spatial_dimension
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
Bt_S_B_it
=
bt_s_b
->
begin
(
bt_s_b_size
,
bt_s_b_size
);
Array
<
Real
>::
matrix_iterator
Bt_S_B_end
=
bt_s_b
->
end
(
bt_s_b_size
,
bt_s_b_size
);
Array
<
Real
>::
matrix_iterator
piola_it
=
piola_kirchhoff_2
(
type
,
ghost_type
).
begin
(
dim
,
dim
);
for
(;
Bt_S_B_it
!=
Bt_S_B_end
;
++
Bt_S_B_it
,
++
shapes_derivatives_filtered_it
,
++
piola_it
)
{
Matrix
<
Real
>
&
Bt_S_B
=
*
Bt_S_B_it
;
Matrix
<
Real
>
&
Piola_kirchhoff_matrix
=
*
piola_it
;
setCauchyStressMatrix
<
dim
>
(
Piola_kirchhoff_matrix
,
S
);
VoigtHelper
<
dim
>::
transferBMatrixToBNL
(
*
shapes_derivatives_filtered_it
,
B
,
nb_nodes_per_element
);
Bt_S
.
mul
<
true
,
false
>
(
B
,
S
);
Bt_S_B
.
mul
<
false
,
false
>
(
Bt_S
,
B
);
}
delete
shapes_derivatives_filtered
;
/// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
Array
<
Real
>
*
K_e
=
new
Array
<
Real
>
(
nb_element
,
bt_s_b_size
*
bt_s_b_size
,
"K_e"
);
fem
->
integrate
(
*
bt_s_b
,
*
K_e
,
bt_s_b_size
*
bt_s_b_size
,
type
,
ghost_type
,
elem_filter
);
delete
bt_s_b
;
fem
->
assembleMatrix
(
*
K_e
,
K
,
spatial_dimension
,
type
,
ghost_type
,
elem_filter
);
delete
K_e
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
Material
::
assembleStiffnessMatrixL2
(
const
ElementType
&
type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
SparseMatrix
&
K
=
const_cast
<
SparseMatrix
&>
(
model
->
getStiffnessMatrix
());
const
Array
<
Real
>
&
shapes_derivatives
=
fem
->
getShapesDerivatives
(
type
,
ghost_type
);
Array
<
UInt
>
&
elem_filter
=
element_filter
(
type
,
ghost_type
);
Array
<
Real
>
&
gradu_vect
=
gradu
(
type
,
ghost_type
);
UInt
nb_element
=
elem_filter
.
getSize
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
nb_quadrature_points
=
fem
->
getNbIntegrationPoints
(
type
,
ghost_type
);
gradu_vect
.
resize
(
nb_quadrature_points
*
nb_element
);
fem
->
gradientOnIntegrationPoints
(
model
->
getDisplacement
(),
gradu_vect
,
dim
,
type
,
ghost_type
,
elem_filter
);
UInt
tangent_size
=
getTangentStiffnessVoigtSize
(
dim
);
Array
<
Real
>
*
tangent_stiffness_matrix
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
tangent_size
*
tangent_size
,
"tangent_stiffness_matrix"
);
tangent_stiffness_matrix
->
clear
();
computeTangentModuli
(
type
,
*
tangent_stiffness_matrix
,
ghost_type
);
Array
<
Real
>
*
shapes_derivatives_filtered
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
dim
*
nb_nodes_per_element
,
"shapes derivatives filtered"
);
Array
<
Real
>::
const_matrix_iterator
shapes_derivatives_it
=
shapes_derivatives
.
begin
(
spatial_dimension
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
shapes_derivatives_filtered_it
=
shapes_derivatives_filtered
->
begin
(
spatial_dimension
,
nb_nodes_per_element
);
UInt
*
elem_filter_val
=
elem_filter
.
storage
();
for
(
UInt
e
=
0
;
e
<
nb_element
;
++
e
,
++
elem_filter_val
)
for
(
UInt
q
=
0
;
q
<
nb_quadrature_points
;
++
q
,
++
shapes_derivatives_filtered_it
)
*
shapes_derivatives_filtered_it
=
shapes_derivatives_it
[
*
elem_filter_val
*
nb_quadrature_points
+
q
];
/// compute @f$\mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
UInt
bt_d_b_size
=
dim
*
nb_nodes_per_element
;
Array
<
Real
>
*
bt_d_b
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
bt_d_b_size
*
bt_d_b_size
,
"B^t*D*B"
);
Matrix
<
Real
>
B
(
tangent_size
,
dim
*
nb_nodes_per_element
);
Matrix
<
Real
>
B2
(
tangent_size
,
dim
*
nb_nodes_per_element
);
Matrix
<
Real
>
Bt_D
(
dim
*
nb_nodes_per_element
,
tangent_size
);
shapes_derivatives_filtered_it
=
shapes_derivatives_filtered
->
begin
(
spatial_dimension
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
Bt_D_B_it
=
bt_d_b
->
begin
(
dim
*
nb_nodes_per_element
,
dim
*
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
grad_u_it
=
gradu_vect
.
begin
(
dim
,
dim
);
Array
<
Real
>::
matrix_iterator
D_it
=
tangent_stiffness_matrix
->
begin
(
tangent_size
,
tangent_size
);
Array
<
Real
>::
matrix_iterator
D_end
=
tangent_stiffness_matrix
->
end
(
tangent_size
,
tangent_size
);
for
(;
D_it
!=
D_end
;
++
D_it
,
++
Bt_D_B_it
,
++
shapes_derivatives_filtered_it
,
++
grad_u_it
)
{
Matrix
<
Real
>
&
grad_u
=
*
grad_u_it
;
Matrix
<
Real
>
&
D
=
*
D_it
;
Matrix
<
Real
>
&
Bt_D_B
=
*
Bt_D_B_it
;
//transferBMatrixToBL1<dim > (*shapes_derivatives_filtered_it, B, nb_nodes_per_element);
VoigtHelper
<
dim
>::
transferBMatrixToSymVoigtBMatrix
(
*
shapes_derivatives_filtered_it
,
B
,
nb_nodes_per_element
);
VoigtHelper
<
dim
>::
transferBMatrixToBL2
(
*
shapes_derivatives_filtered_it
,
grad_u
,
B2
,
nb_nodes_per_element
);
B
+=
B2
;
Bt_D
.
mul
<
true
,
false
>
(
B
,
D
);
Bt_D_B
.
mul
<
false
,
false
>
(
Bt_D
,
B
);
}
delete
tangent_stiffness_matrix
;
delete
shapes_derivatives_filtered
;
/// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
Array
<
Real
>
*
K_e
=
new
Array
<
Real
>
(
nb_element
,
bt_d_b_size
*
bt_d_b_size
,
"K_e"
);
fem
->
integrate
(
*
bt_d_b
,
*
K_e
,
bt_d_b_size
*
bt_d_b_size
,
type
,
ghost_type
,
elem_filter
);
delete
bt_d_b
;
fem
->
assembleMatrix
(
*
K_e
,
K
,
spatial_dimension
,
type
,
ghost_type
,
elem_filter
);
delete
K_e
;
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
Material
::
assembleResidual
(
GhostType
ghost_type
){
AKANTU_DEBUG_IN
();
Array
<
Real
>
&
residual
=
const_cast
<
Array
<
Real
>
&>
(
model
->
getResidual
());
Mesh
&
mesh
=
fem
->
getMesh
();
Mesh
::
type_iterator
it
=
element_filter
.
firstType
(
dim
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
element_filter
.
lastType
(
dim
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
{
const
Array
<
Real
>
&
shapes_derivatives
=
fem
->
getShapesDerivatives
(
*
it
,
ghost_type
);
Array
<
UInt
>
&
elem_filter
=
element_filter
(
*
it
,
ghost_type
);
if
(
elem_filter
.
getSize
()
==
0
)
continue
;
UInt
size_of_shapes_derivatives
=
shapes_derivatives
.
getNbComponent
();
UInt
nb_element
=
elem_filter
.
getSize
();
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
*
it
);
UInt
nb_quadrature_points
=
fem
->
getNbIntegrationPoints
(
*
it
,
ghost_type
);
Array
<
Real
>
*
shapesd_filtered
=
new
Array
<
Real
>
(
0
,
size_of_shapes_derivatives
,
"filtered shapesd"
);
FEEngine
::
filterElementalData
(
mesh
,
shapes_derivatives
,
*
shapesd_filtered
,
*
it
,
ghost_type
,
elem_filter
);
Array
<
Real
>::
matrix_iterator
shapes_derivatives_filtered_it
=
shapesd_filtered
->
begin
(
dim
,
nb_nodes_per_element
);
//Set stress vectors
UInt
stress_size
=
getTangentStiffnessVoigtSize
(
dim
);
//Set matrices B and BNL*
UInt
bt_s_size
=
dim
*
nb_nodes_per_element
;
Array
<
Real
>
*
bt_s
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
bt_s_size
,
"B^t*S"
);
Array
<
Real
>::
matrix_iterator
grad_u_it
=
this
->
gradu
(
*
it
,
ghost_type
).
begin
(
dim
,
dim
);
Array
<
Real
>::
matrix_iterator
grad_u_end
=
this
->
gradu
(
*
it
,
ghost_type
).
end
(
dim
,
dim
);
Array
<
Real
>::
matrix_iterator
stress_it
=
this
->
piola_kirchhoff_2
(
*
it
,
ghost_type
).
begin
(
dim
,
dim
);
shapes_derivatives_filtered_it
=
shapesd_filtered
->
begin
(
dim
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
bt_s_it
=
bt_s
->
begin
(
bt_s_size
,
1
);
Matrix
<
Real
>
S_vect
(
stress_size
,
1
);
Matrix
<
Real
>
B_tensor
(
stress_size
,
bt_s_size
);
Matrix
<
Real
>
B2_tensor
(
stress_size
,
bt_s_size
);
for
(;
grad_u_it
!=
grad_u_end
;
++
grad_u_it
,
++
stress_it
,
++
shapes_derivatives_filtered_it
,
++
bt_s_it
)
{
Matrix
<
Real
>
&
grad_u
=
*
grad_u_it
;
Matrix
<
Real
>
&
r_it
=
*
bt_s_it
;
Matrix
<
Real
>
&
S_it
=
*
stress_it
;
setCauchyStressArray
<
dim
>
(
S_it
,
S_vect
);
VoigtHelper
<
dim
>::
transferBMatrixToSymVoigtBMatrix
(
*
shapes_derivatives_filtered_it
,
B_tensor
,
nb_nodes_per_element
);
VoigtHelper
<
dim
>::
transferBMatrixToBL2
(
*
shapes_derivatives_filtered_it
,
grad_u
,
B2_tensor
,
nb_nodes_per_element
);
B_tensor
+=
B2_tensor
;
r_it
.
mul
<
true
,
false
>
(
B_tensor
,
S_vect
);
}
delete
shapesd_filtered
;
/// compute @f$ k_e = \int_e \mathbf{B}^t * \mathbf{D} * \mathbf{B}@f$
Array
<
Real
>
*
r_e
=
new
Array
<
Real
>
(
nb_element
,
bt_s_size
,
"r_e"
);
fem
->
integrate
(
*
bt_s
,
*
r_e
,
bt_s_size
,
*
it
,
ghost_type
,
elem_filter
);
delete
bt_s
;
fem
->
assembleArray
(
*
r_e
,
residual
,
model
->
getDOFSynchronizer
().
getLocalDOFEquationNumbers
(),
residual
.
getNbComponent
(),
*
it
,
ghost_type
,
elem_filter
,
-
1
);
delete
r_e
;
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
computeAllStressesFromTangentModuli
(
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
UInt
spatial_dimension
=
model
->
getSpatialDimension
();
Mesh
::
type_iterator
it
=
element_filter
.
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last_type
=
element_filter
.
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last_type
;
++
it
)
{
switch
(
spatial_dimension
)
{
case
1
:
{
computeAllStressesFromTangentModuli
<
1
>
(
*
it
,
ghost_type
);
break
;
}
case
2
:
{
computeAllStressesFromTangentModuli
<
2
>
(
*
it
,
ghost_type
);
break
;
}
case
3
:
{
computeAllStressesFromTangentModuli
<
3
>
(
*
it
,
ghost_type
);
break
;
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
template
<
UInt
dim
>
void
Material
::
computeAllStressesFromTangentModuli
(
const
ElementType
&
type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
const
Array
<
Real
>
&
shapes_derivatives
=
fem
->
getShapesDerivatives
(
type
,
ghost_type
);
Array
<
UInt
>
&
elem_filter
=
element_filter
(
type
,
ghost_type
);
Array
<
Real
>
&
gradu_vect
=
gradu
(
type
,
ghost_type
);
UInt
nb_element
=
elem_filter
.
getSize
();
if
(
nb_element
)
{
UInt
nb_nodes_per_element
=
Mesh
::
getNbNodesPerElement
(
type
);
UInt
nb_quadrature_points
=
fem
->
getNbIntegrationPoints
(
type
,
ghost_type
);
gradu_vect
.
resize
(
nb_quadrature_points
*
nb_element
);
Array
<
Real
>
&
disp
=
model
->
getDisplacement
();
fem
->
gradientOnIntegrationPoints
(
disp
,
gradu_vect
,
dim
,
type
,
ghost_type
,
elem_filter
);
UInt
tangent_moduli_size
=
getTangentStiffnessVoigtSize
(
dim
);
Array
<
Real
>
*
tangent_moduli_tensors
=
new
Array
<
Real
>
(
nb_element
*
nb_quadrature_points
,
tangent_moduli_size
*
tangent_moduli_size
,
"tangent_moduli_tensors"
);
tangent_moduli_tensors
->
clear
();
computeTangentModuli
(
type
,
*
tangent_moduli_tensors
,
ghost_type
);
Array
<
Real
>
*
shapesd_filtered
=
new
Array
<
Real
>
(
0
,
dim
*
nb_nodes_per_element
,
"filtered shapesd"
);
FEEngine
::
filterElementalData
(
fem
->
getMesh
(),
shapes_derivatives
,
*
shapesd_filtered
,
type
,
ghost_type
,
elem_filter
);
Array
<
Real
>
filtered_u
(
nb_element
,
nb_nodes_per_element
*
spatial_dimension
);
FEEngine
::
extractNodalToElementField
(
fem
->
getMesh
(),
disp
,
filtered_u
,
type
,
ghost_type
,
elem_filter
);
/// compute @f$\mathbf{D} \mathbf{B} \mathbf{u}@f$
Array
<
Real
>::
matrix_iterator
shapes_derivatives_filtered_it
=
shapesd_filtered
->
begin
(
dim
,
nb_nodes_per_element
);
Array
<
Real
>::
matrix_iterator
D_it
=
tangent_moduli_tensors
->
begin
(
tangent_moduli_size
,
tangent_moduli_size
);
Array
<
Real
>::
matrix_iterator
sigma_it
=
stress
(
type
,
ghost_type
).
begin
(
spatial_dimension
,
spatial_dimension
);
Array
<
Real
>::
vector_iterator
u_it
=
filtered_u
.
begin
(
spatial_dimension
*
nb_nodes_per_element
);
Matrix
<
Real
>
B
(
tangent_moduli_size
,
spatial_dimension
*
nb_nodes_per_element
);
Vector
<
Real
>
Bu
(
tangent_moduli_size
);
Vector
<
Real
>
DBu
(
tangent_moduli_size
);
for
(
UInt
e
=
0
;
e
<
nb_element
;
++
e
,
++
u_it
)
{
for
(
UInt
q
=
0
;
q
<
nb_quadrature_points
;
++
q
,
++
D_it
,
++
shapes_derivatives_filtered_it
,
++
sigma_it
)
{
Vector
<
Real
>
&
u
=
*
u_it
;
Matrix
<
Real
>
&
sigma
=
*
sigma_it
;
Matrix
<
Real
>
&
D
=
*
D_it
;
VoigtHelper
<
dim
>::
transferBMatrixToSymVoigtBMatrix
(
*
shapes_derivatives_filtered_it
,
B
,
nb_nodes_per_element
);
Bu
.
mul
<
false
>
(
B
,
u
);
DBu
.
mul
<
false
>
(
D
,
Bu
);
// Voigt notation to full symmetric tensor
for
(
UInt
i
=
0
;
i
<
dim
;
++
i
)
sigma
(
i
,
i
)
=
DBu
(
i
);
if
(
dim
==
2
)
{
sigma
(
0
,
1
)
=
sigma
(
1
,
0
)
=
DBu
(
2
);
}
else
if
(
dim
==
3
)
{
sigma
(
1
,
2
)
=
sigma
(
2
,
1
)
=
DBu
(
3
);
sigma
(
0
,
2
)
=
sigma
(
2
,
0
)
=
DBu
(
4
);
sigma
(
0
,
1
)
=
sigma
(
1
,
0
)
=
DBu
(
5
);
}
}
}
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
computePotentialEnergyByElements
()
{
AKANTU_DEBUG_IN
();
Mesh
::
type_iterator
it
=
element_filter
.
firstType
(
spatial_dimension
);
Mesh
::
type_iterator
last_type
=
element_filter
.
lastType
(
spatial_dimension
);
for
(;
it
!=
last_type
;
++
it
)
{
computePotentialEnergy
(
*
it
);
}
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
computePotentialEnergy
(
ElementType
el_type
,
GhostType
ghost_type
)
{
AKANTU_DEBUG_IN
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
Real
Material
::
getPotentialEnergy
()
{
AKANTU_DEBUG_IN
();
Real
epot
=
0.
;
computePotentialEnergyByElements
();
/// integrate the potential energy for each type of elements
Mesh
::
type_iterator
it
=
element_filter
.
firstType
(
spatial_dimension
);
Mesh
::
type_iterator
last_type
=
element_filter
.
lastType
(
spatial_dimension
);
for
(;
it
!=
last_type
;
++
it
)
{
epot
+=
fem
->
integrate
(
potential_energy
(
*
it
,
_not_ghost
),
*
it
,
_not_ghost
,
element_filter
(
*
it
,
_not_ghost
));
}
AKANTU_DEBUG_OUT
();
return
epot
;
}
/* -------------------------------------------------------------------------- */
Real
Material
::
getPotentialEnergy
(
ElementType
&
type
,
UInt
index
)
{
AKANTU_DEBUG_IN
();
Real
epot
=
0.
;
Vector
<
Real
>
epot_on_quad_points
(
fem
->
getNbIntegrationPoints
(
type
));
computePotentialEnergyByElement
(
type
,
index
,
epot_on_quad_points
);
epot
=
fem
->
integrate
(
epot_on_quad_points
,
type
,
element_filter
(
type
)(
index
));
AKANTU_DEBUG_OUT
();
return
epot
;
}
/* -------------------------------------------------------------------------- */
Real
Material
::
getEnergy
(
std
::
string
type
)
{
AKANTU_DEBUG_IN
();
if
(
type
==
"potential"
)
return
getPotentialEnergy
();
AKANTU_DEBUG_OUT
();
return
0.
;
}
/* -------------------------------------------------------------------------- */
Real
Material
::
getEnergy
(
std
::
string
energy_id
,
ElementType
type
,
UInt
index
)
{
AKANTU_DEBUG_IN
();
if
(
energy_id
==
"potential"
)
return
getPotentialEnergy
(
type
,
index
);
AKANTU_DEBUG_OUT
();
return
0.
;
}
/* -------------------------------------------------------------------------- */
void
Material
::
initElementalFieldInterpolation
(
const
ElementTypeMapArray
<
Real
>
&
interpolation_points_coordinates
)
{
AKANTU_DEBUG_IN
();
this
->
fem
->
initElementalFieldInterpolationFromIntegrationPoints
(
interpolation_points_coordinates
,
this
->
interpolation_points_matrices
,
this
->
interpolation_inverse_coordinates
,
&
(
this
->
element_filter
));
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
interpolateStress
(
ElementTypeMapArray
<
Real
>
&
result
,
const
GhostType
ghost_type
)
{
this
->
fem
->
interpolateElementalFieldFromIntegrationPoints
(
this
->
stress
,
this
->
interpolation_points_matrices
,
this
->
interpolation_inverse_coordinates
,
result
,
ghost_type
,
&
(
this
->
element_filter
));
}
/* -------------------------------------------------------------------------- */
void
Material
::
interpolateStressOnFacets
(
ElementTypeMapArray
<
Real
>
&
result
,
ElementTypeMapArray
<
Real
>
&
by_elem_result
,
const
GhostType
ghost_type
)
{
interpolateStress
(
by_elem_result
,
ghost_type
);
UInt
stress_size
=
this
->
stress
.
getNbComponent
();
const
Mesh
&
mesh
=
this
->
model
->
getMesh
();
const
Mesh
&
mesh_facets
=
mesh
.
getMeshFacets
();
Mesh
::
type_iterator
it
=
this
->
element_filter
.
firstType
(
spatial_dimension
,
ghost_type
);
Mesh
::
type_iterator
last
=
this
->
element_filter
.
lastType
(
spatial_dimension
,
ghost_type
);
for
(;
it
!=
last
;
++
it
)
{
ElementType
type
=
*
it
;
Array
<
UInt
>
&
elem_fil
=
element_filter
(
type
,
ghost_type
);
Array
<
Real
>
&
by_elem_res
=
by_elem_result
(
type
,
ghost_type
);
UInt
nb_element
=
elem_fil
.
getSize
();
UInt
nb_element_full
=
this
->
model
->
getMesh
().
getNbElement
(
type
,
ghost_type
);
UInt
nb_interpolation_points_per_elem
=
by_elem_res
.
getSize
()
/
nb_element_full
;
const
Array
<
Element
>
&
facet_to_element
=
mesh_facets
.
getSubelementToElement
(
type
,
ghost_type
);
ElementType
type_facet
=
Mesh
::
getFacetType
(
type
);
UInt
nb_facet_per_elem
=
facet_to_element
.
getNbComponent
();
UInt
nb_quad_per_facet
=
nb_interpolation_points_per_elem
/
nb_facet_per_elem
;
Element
element_for_comparison
(
type
,
0
,
ghost_type
);
const
Array
<
std
::
vector
<
Element
>
>
*
element_to_facet
=
NULL
;
GhostType
current_ghost_type
=
_casper
;
Array
<
Real
>
*
result_vec
=
NULL
;
Array
<
Real
>::
const_matrix_iterator
result_it
=
by_elem_res
.
begin_reinterpret
(
stress_size
,
nb_interpolation_points_per_elem
,
nb_element_full
);
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
){
UInt
global_el
=
elem_fil
(
el
);
element_for_comparison
.
element
=
global_el
;
for
(
UInt
f
=
0
;
f
<
nb_facet_per_elem
;
++
f
)
{
Element
facet_elem
=
facet_to_element
(
global_el
,
f
);
UInt
global_facet
=
facet_elem
.
element
;
if
(
facet_elem
.
ghost_type
!=
current_ghost_type
)
{
current_ghost_type
=
facet_elem
.
ghost_type
;
element_to_facet
=
&
mesh_facets
.
getElementToSubelement
(
type_facet
,
current_ghost_type
);
result_vec
=
&
result
(
type_facet
,
current_ghost_type
);
}
bool
is_second_element
=
(
*
element_to_facet
)(
global_facet
)[
0
]
!=
element_for_comparison
;
for
(
UInt
q
=
0
;
q
<
nb_quad_per_facet
;
++
q
)
{
Vector
<
Real
>
result_local
(
result_vec
->
storage
()
+
(
global_facet
*
nb_quad_per_facet
+
q
)
*
result_vec
->
getNbComponent
()
+
is_second_element
*
stress_size
,
stress_size
);
const
Matrix
<
Real
>
&
result_tmp
(
result_it
[
global_el
]);
result_local
=
result_tmp
(
f
*
nb_quad_per_facet
+
q
);
}
}
}
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
const
Array
<
T
>
&
Material
::
getArray
(
const
ID
&
vect_id
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
const
{
AKANTU_DEBUG_TO_IMPLEMENT
();
return
NULL
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
Array
<
T
>
&
Material
::
getArray
(
const
ID
&
vect_id
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
return
NULL
;
}
/* -------------------------------------------------------------------------- */
template
<>
const
Array
<
Real
>
&
Material
::
getArray
(
const
ID
&
vect_id
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
const
{
std
::
stringstream
sstr
;
std
::
string
ghost_id
=
""
;
if
(
ghost_type
==
_ghost
)
ghost_id
=
":ghost"
;
sstr
<<
getID
()
<<
":"
<<
vect_id
<<
":"
<<
type
<<
ghost_id
;
ID
fvect_id
=
sstr
.
str
();
try
{
return
Memory
::
getArray
<
Real
>
(
fvect_id
);
}
catch
(
debug
::
Exception
&
e
)
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain a vector "
<<
vect_id
<<
"("
<<
fvect_id
<<
") ["
<<
e
<<
"]"
);
}
}
/* -------------------------------------------------------------------------- */
template
<>
Array
<
Real
>
&
Material
::
getArray
(
const
ID
&
vect_id
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
std
::
stringstream
sstr
;
std
::
string
ghost_id
=
""
;
if
(
ghost_type
==
_ghost
)
ghost_id
=
":ghost"
;
sstr
<<
getID
()
<<
":"
<<
vect_id
<<
":"
<<
type
<<
ghost_id
;
ID
fvect_id
=
sstr
.
str
();
try
{
return
Memory
::
getArray
<
Real
>
(
fvect_id
);
}
catch
(
debug
::
Exception
&
e
)
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain a vector "
<<
vect_id
<<
"("
<<
fvect_id
<<
") ["
<<
e
<<
"]"
);
}
}
/* -------------------------------------------------------------------------- */
template
<>
const
Array
<
UInt
>
&
Material
::
getArray
(
const
ID
&
vect_id
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
const
{
std
::
stringstream
sstr
;
std
::
string
ghost_id
=
""
;
if
(
ghost_type
==
_ghost
)
ghost_id
=
":ghost"
;
sstr
<<
getID
()
<<
":"
<<
vect_id
<<
":"
<<
type
<<
ghost_id
;
ID
fvect_id
=
sstr
.
str
();
try
{
return
Memory
::
getArray
<
UInt
>
(
fvect_id
);
}
catch
(
debug
::
Exception
&
e
)
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain a vector "
<<
vect_id
<<
"("
<<
fvect_id
<<
") ["
<<
e
<<
"]"
);
}
}
/* -------------------------------------------------------------------------- */
template
<>
Array
<
UInt
>
&
Material
::
getArray
(
const
ID
&
vect_id
,
const
ElementType
&
type
,
const
GhostType
&
ghost_type
)
{
std
::
stringstream
sstr
;
std
::
string
ghost_id
=
""
;
if
(
ghost_type
==
_ghost
)
ghost_id
=
":ghost"
;
sstr
<<
getID
()
<<
":"
<<
vect_id
<<
":"
<<
type
<<
ghost_id
;
ID
fvect_id
=
sstr
.
str
();
try
{
return
Memory
::
getArray
<
UInt
>
(
fvect_id
);
}
catch
(
debug
::
Exception
&
e
)
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain a vector "
<<
vect_id
<<
"("
<<
fvect_id
<<
") ["
<<
e
<<
"]"
);
}
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
const
InternalField
<
T
>
&
Material
::
getInternal
(
const
ID
&
int_id
)
const
{
AKANTU_DEBUG_TO_IMPLEMENT
();
return
NULL
;
}
/* -------------------------------------------------------------------------- */
template
<
typename
T
>
InternalField
<
T
>
&
Material
::
getInternal
(
const
ID
&
int_id
)
{
AKANTU_DEBUG_TO_IMPLEMENT
();
return
NULL
;
}
/* -------------------------------------------------------------------------- */
template
<>
const
InternalField
<
Real
>
&
Material
::
getInternal
(
const
ID
&
int_id
)
const
{
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
const_iterator
it
=
internal_vectors_real
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_real
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
template
<>
InternalField
<
Real
>
&
Material
::
getInternal
(
const
ID
&
int_id
)
{
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
iterator
it
=
internal_vectors_real
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_real
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
template
<>
const
InternalField
<
UInt
>
&
Material
::
getInternal
(
const
ID
&
int_id
)
const
{
std
::
map
<
ID
,
InternalField
<
UInt
>
*>::
const_iterator
it
=
internal_vectors_uint
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_uint
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
template
<>
InternalField
<
UInt
>
&
Material
::
getInternal
(
const
ID
&
int_id
)
{
std
::
map
<
ID
,
InternalField
<
UInt
>
*>::
iterator
it
=
internal_vectors_uint
.
find
(
getID
()
+
":"
+
int_id
);
if
(
it
==
internal_vectors_uint
.
end
())
{
AKANTU_SILENT_EXCEPTION
(
"The material "
<<
name
<<
"("
<<
getID
()
<<
") does not contain an internal "
<<
int_id
<<
" ("
<<
(
getID
()
+
":"
+
int_id
)
<<
")"
);
}
return
*
it
->
second
;
}
/* -------------------------------------------------------------------------- */
void
Material
::
addElements
(
const
Array
<
Element
>
&
elements_to_add
)
{
AKANTU_DEBUG_IN
();
UInt
mat_id
=
model
->
getInternalIndexFromID
(
getID
());
Array
<
Element
>::
const_iterator
<
Element
>
el_begin
=
elements_to_add
.
begin
();
Array
<
Element
>::
const_iterator
<
Element
>
el_end
=
elements_to_add
.
end
();
for
(;
el_begin
!=
el_end
;
++
el_begin
)
{
const
Element
&
element
=
*
el_begin
;
Array
<
UInt
>
&
mat_indexes
=
model
->
getMaterialByElement
(
element
.
type
,
element
.
ghost_type
);
Array
<
UInt
>
&
mat_loc_num
=
model
->
getMaterialLocalNumbering
(
element
.
type
,
element
.
ghost_type
);
UInt
index
=
this
->
addElement
(
element
.
type
,
element
.
element
,
element
.
ghost_type
);
mat_indexes
(
element
.
element
)
=
mat_id
;
mat_loc_num
(
element
.
element
)
=
index
;
}
this
->
resizeInternals
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
removeElements
(
const
Array
<
Element
>
&
elements_to_remove
)
{
AKANTU_DEBUG_IN
();
Array
<
Element
>::
const_iterator
<
Element
>
el_begin
=
elements_to_remove
.
begin
();
Array
<
Element
>::
const_iterator
<
Element
>
el_end
=
elements_to_remove
.
end
();
if
(
el_begin
==
el_end
)
return
;
ElementTypeMapArray
<
UInt
>
material_local_new_numbering
(
"remove mat filter elem"
,
getID
());
Element
element
;
for
(
ghost_type_t
::
iterator
gt
=
ghost_type_t
::
begin
();
gt
!=
ghost_type_t
::
end
();
++
gt
)
{
GhostType
ghost_type
=
*
gt
;
element
.
ghost_type
=
ghost_type
;
ElementTypeMapArray
<
UInt
>::
type_iterator
it
=
element_filter
.
firstType
(
_all_dimensions
,
ghost_type
,
_ek_not_defined
);
ElementTypeMapArray
<
UInt
>::
type_iterator
end
=
element_filter
.
lastType
(
_all_dimensions
,
ghost_type
,
_ek_not_defined
);
for
(;
it
!=
end
;
++
it
)
{
ElementType
type
=
*
it
;
element
.
type
=
type
;
Array
<
UInt
>
&
elem_filter
=
this
->
element_filter
(
type
,
ghost_type
);
Array
<
UInt
>
&
mat_loc_num
=
this
->
model
->
getMaterialLocalNumbering
(
type
,
ghost_type
);
if
(
!
material_local_new_numbering
.
exists
(
type
,
ghost_type
))
material_local_new_numbering
.
alloc
(
elem_filter
.
getSize
(),
1
,
type
,
ghost_type
);
Array
<
UInt
>
&
mat_renumbering
=
material_local_new_numbering
(
type
,
ghost_type
);
UInt
nb_element
=
elem_filter
.
getSize
();
element
.
kind
=
(
*
el_begin
).
kind
;
Array
<
UInt
>
elem_filter_tmp
;
UInt
new_id
=
0
;
for
(
UInt
el
=
0
;
el
<
nb_element
;
++
el
)
{
element
.
element
=
elem_filter
(
el
);
if
(
std
::
find
(
el_begin
,
el_end
,
element
)
==
el_end
)
{
elem_filter_tmp
.
push_back
(
element
.
element
);
mat_renumbering
(
el
)
=
new_id
;
mat_loc_num
(
element
.
element
)
=
new_id
;
++
new_id
;
}
else
{
mat_renumbering
(
el
)
=
UInt
(
-
1
);
}
}
elem_filter
.
resize
(
elem_filter_tmp
.
getSize
());
elem_filter
.
copy
(
elem_filter_tmp
);
}
}
for
(
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
iterator
it
=
internal_vectors_real
.
begin
();
it
!=
internal_vectors_real
.
end
();
++
it
)
it
->
second
->
removeIntegrationPoints
(
material_local_new_numbering
);
for
(
std
::
map
<
ID
,
InternalField
<
UInt
>
*>::
iterator
it
=
internal_vectors_uint
.
begin
();
it
!=
internal_vectors_uint
.
end
();
++
it
)
it
->
second
->
removeIntegrationPoints
(
material_local_new_numbering
);
for
(
std
::
map
<
ID
,
InternalField
<
bool
>
*>::
iterator
it
=
internal_vectors_bool
.
begin
();
it
!=
internal_vectors_bool
.
end
();
++
it
)
it
->
second
->
removeIntegrationPoints
(
material_local_new_numbering
);
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
resizeInternals
()
{
AKANTU_DEBUG_IN
();
for
(
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
iterator
it
=
internal_vectors_real
.
begin
();
it
!=
internal_vectors_real
.
end
();
++
it
)
it
->
second
->
resize
();
for
(
std
::
map
<
ID
,
InternalField
<
UInt
>
*>::
iterator
it
=
internal_vectors_uint
.
begin
();
it
!=
internal_vectors_uint
.
end
();
++
it
)
it
->
second
->
resize
();
for
(
std
::
map
<
ID
,
InternalField
<
bool
>
*>::
iterator
it
=
internal_vectors_bool
.
begin
();
it
!=
internal_vectors_bool
.
end
();
++
it
)
it
->
second
->
resize
();
AKANTU_DEBUG_OUT
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
onElementsAdded
(
__attribute__
((
unused
))
const
Array
<
Element
>
&
element_list
,
__attribute__
((
unused
))
const
NewElementsEvent
&
event
)
{
this
->
resizeInternals
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
onElementsRemoved
(
const
Array
<
Element
>
&
element_list
,
const
ElementTypeMapArray
<
UInt
>
&
new_numbering
,
__attribute__
((
unused
))
const
RemovedElementsEvent
&
event
)
{
UInt
my_num
=
model
->
getInternalIndexFromID
(
getID
());
ElementTypeMapArray
<
UInt
>
material_local_new_numbering
(
"remove mat filter elem"
,
getID
());
Array
<
Element
>::
const_iterator
<
Element
>
el_begin
=
element_list
.
begin
();
Array
<
Element
>::
const_iterator
<
Element
>
el_end
=
element_list
.
end
();
for
(
ghost_type_t
::
iterator
g
=
ghost_type_t
::
begin
();
g
!=
ghost_type_t
::
end
();
++
g
)
{
GhostType
gt
=
*
g
;
ElementTypeMapArray
<
UInt
>::
type_iterator
it
=
new_numbering
.
firstType
(
_all_dimensions
,
gt
,
_ek_not_defined
);
ElementTypeMapArray
<
UInt
>::
type_iterator
end
=
new_numbering
.
lastType
(
_all_dimensions
,
gt
,
_ek_not_defined
);
for
(;
it
!=
end
;
++
it
)
{
ElementType
type
=
*
it
;
if
(
element_filter
.
exists
(
type
,
gt
)
&&
element_filter
(
type
,
gt
).
getSize
()){
Array
<
UInt
>
&
elem_filter
=
element_filter
(
type
,
gt
);
Array
<
UInt
>
&
mat_indexes
=
this
->
model
->
getMaterialByElement
(
*
it
,
gt
);
Array
<
UInt
>
&
mat_loc_num
=
this
->
model
->
getMaterialLocalNumbering
(
*
it
,
gt
);
UInt
nb_element
=
this
->
model
->
getMesh
().
getNbElement
(
type
,
gt
);
// all materials will resize of the same size...
mat_indexes
.
resize
(
nb_element
);
mat_loc_num
.
resize
(
nb_element
);
if
(
!
material_local_new_numbering
.
exists
(
type
,
gt
))
material_local_new_numbering
.
alloc
(
elem_filter
.
getSize
(),
1
,
type
,
gt
);
Array
<
UInt
>
&
mat_renumbering
=
material_local_new_numbering
(
type
,
gt
);
const
Array
<
UInt
>
&
renumbering
=
new_numbering
(
type
,
gt
);
Array
<
UInt
>
elem_filter_tmp
;
UInt
ni
=
0
;
Element
el
;
el
.
type
=
type
;
el
.
ghost_type
=
gt
;
el
.
kind
=
Mesh
::
getKind
(
type
);
for
(
UInt
i
=
0
;
i
<
elem_filter
.
getSize
();
++
i
)
{
el
.
element
=
elem_filter
(
i
);
if
(
std
::
find
(
el_begin
,
el_end
,
el
)
==
el_end
)
{
UInt
new_el
=
renumbering
(
el
.
element
);
AKANTU_DEBUG_ASSERT
(
new_el
!=
UInt
(
-
1
),
"A not removed element as been badly renumbered"
);
elem_filter_tmp
.
push_back
(
new_el
);
mat_renumbering
(
i
)
=
ni
;
mat_indexes
(
new_el
)
=
my_num
;
mat_loc_num
(
new_el
)
=
ni
;
++
ni
;
}
else
{
mat_renumbering
(
i
)
=
UInt
(
-
1
);
}
}
elem_filter
.
resize
(
elem_filter_tmp
.
getSize
());
elem_filter
.
copy
(
elem_filter_tmp
);
}
}
}
for
(
std
::
map
<
ID
,
InternalField
<
Real
>
*>::
iterator
it
=
internal_vectors_real
.
begin
();
it
!=
internal_vectors_real
.
end
();
++
it
)
it
->
second
->
removeIntegrationPoints
(
material_local_new_numbering
);
for
(
std
::
map
<
ID
,
InternalField
<
UInt
>
*>::
iterator
it
=
internal_vectors_uint
.
begin
();
it
!=
internal_vectors_uint
.
end
();
++
it
)
it
->
second
->
removeIntegrationPoints
(
material_local_new_numbering
);
for
(
std
::
map
<
ID
,
InternalField
<
bool
>
*>::
iterator
it
=
internal_vectors_bool
.
begin
();
it
!=
internal_vectors_bool
.
end
();
++
it
)
it
->
second
->
removeIntegrationPoints
(
material_local_new_numbering
);
}
/* -------------------------------------------------------------------------- */
void
Material
::
onBeginningSolveStep
(
const
AnalysisMethod
&
method
)
{
this
->
savePreviousState
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
onEndSolveStep
(
const
AnalysisMethod
&
method
)
{
ElementTypeMapArray
<
UInt
>::
type_iterator
it
=
this
->
element_filter
.
firstType
(
_all_dimensions
,
_not_ghost
,
_ek_not_defined
);
ElementTypeMapArray
<
UInt
>::
type_iterator
end
=
element_filter
.
lastType
(
_all_dimensions
,
_not_ghost
,
_ek_not_defined
);
for
(;
it
!=
end
;
++
it
)
{
this
->
updateEnergies
(
*
it
,
_not_ghost
);
}
}
/* -------------------------------------------------------------------------- */
void
Material
::
onDamageIteration
()
{
this
->
savePreviousState
();
}
/* -------------------------------------------------------------------------- */
void
Material
::
onDamageUpdate
()
{
ElementTypeMapArray
<
UInt
>::
type_iterator
it
=
this
->
element_filter
.
firstType
(
_all_dimensions
,
_not_ghost
,
_ek_not_defined
);
ElementTypeMapArray
<
UInt
>::
type_iterator
end
=
element_filter
.
lastType
(
_all_dimensions
,
_not_ghost
,
_ek_not_defined
);
for
(;
it
!=
end
;
++
it
)
{
this
->
updateEnergiesAfterDamage
(
*
it
,
_not_ghost
);
}
}
/* -------------------------------------------------------------------------- */
void
Material
::
onDump
(){
if
(
this
->
isFiniteDeformation
())
this
->
computeAllCauchyStresses
(
_not_ghost
);
}
/* -------------------------------------------------------------------------- */
void
Material
::
printself
(
std
::
ostream
&
stream
,
int
indent
)
const
{
std
::
string
space
;
for
(
Int
i
=
0
;
i
<
indent
;
i
++
,
space
+=
AKANTU_INDENT
);
std
::
string
type
=
getID
().
substr
(
getID
().
find_last_of
(
":"
)
+
1
);
stream
<<
space
<<
"Material "
<<
type
<<
" ["
<<
std
::
endl
;
Parsable
::
printself
(
stream
,
indent
);
stream
<<
space
<<
"]"
<<
std
::
endl
;
}
/* -------------------------------------------------------------------------- */
/// extrapolate internal values
void
Material
::
extrapolateInternal
(
const
ID
&
id
,
const
Element
&
element
,
const
Matrix
<
Real
>
&
point
,
Matrix
<
Real
>
&
extrapolated
)
{
if
(
this
->
isInternal
<
Real
>
(
id
,
element
.
kind
))
{
UInt
nb_element
=
this
->
element_filter
(
element
.
type
,
element
.
ghost_type
).
getSize
();
const
ID
name
=
this
->
getID
()
+
":"
+
id
;
UInt
nb_quads
=
this
->
internal_vectors_real
[
name
]
->
getFEEngine
().
getNbIntegrationPoints
(
element
.
type
,
element
.
ghost_type
);
const
Array
<
Real
>
&
internal
=
this
->
getArray
<
Real
>
(
id
,
element
.
type
,
element
.
ghost_type
);
UInt
nb_component
=
internal
.
getNbComponent
();
Array
<
Real
>::
const_matrix_iterator
internal_it
=
internal
.
begin_reinterpret
(
nb_component
,
nb_quads
,
nb_element
);
Element
local_element
=
this
->
convertToLocalElement
(
element
);
/// instead of really extrapolating, here the value of the first GP
/// is copied into the result vector. This works only for linear
/// elements
/// @todo extrapolate!!!!
AKANTU_DEBUG_WARNING
(
"This is a fix, values are not truly extrapolated"
);
const
Matrix
<
Real
>
&
values
=
internal_it
[
local_element
.
element
];
UInt
index
=
0
;
Vector
<
Real
>
tmp
(
nb_component
);
for
(
UInt
j
=
0
;
j
<
values
.
cols
();
++
j
)
{
tmp
=
values
(
j
);
if
(
tmp
.
norm
()
>
0
)
{
index
=
j
;
break
;
}
}
for
(
UInt
i
=
0
;
i
<
extrapolated
.
size
();
++
i
)
{
extrapolated
(
i
)
=
values
(
index
);
}
}
else
{
Matrix
<
Real
>
default_values
(
extrapolated
.
rows
(),
extrapolated
.
cols
(),
0.
);
extrapolated
=
default_values
;
}
}
/* -------------------------------------------------------------------------- */
void
Material
::
applyEigenGradU
(
const
Matrix
<
Real
>
&
prescribed_eigen_grad_u
,
const
GhostType
ghost_type
)
{
ElementTypeMapArray
<
UInt
>::
type_iterator
it
=
this
->
element_filter
.
firstType
(
_all_dimensions
,
_not_ghost
,
_ek_not_defined
);
ElementTypeMapArray
<
UInt
>::
type_iterator
end
=
element_filter
.
lastType
(
_all_dimensions
,
_not_ghost
,
_ek_not_defined
);
for
(;
it
!=
end
;
++
it
)
{
ElementType
type
=
*
it
;
if
(
!
element_filter
(
type
,
ghost_type
).
getSize
())
continue
;
Array
<
Real
>::
matrix_iterator
eigen_it
=
this
->
eigengradu
(
type
,
ghost_type
).
begin
(
spatial_dimension
,
spatial_dimension
);
Array
<
Real
>::
matrix_iterator
eigen_end
=
this
->
eigengradu
(
type
,
ghost_type
).
end
(
spatial_dimension
,
spatial_dimension
);
for
(;
eigen_it
!=
eigen_end
;
++
eigen_it
)
{
Matrix
<
Real
>
&
current_eigengradu
=
*
eigen_it
;
current_eigengradu
=
prescribed_eigen_grad_u
;
}
}
}
__END_AKANTU__
Event Timeline
Log In to Comment